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GENERAL INTRODUCTION 

Strains of the genus Propionibacterium are industrially important 

microorganisms used in the production of Swiss-type cheeses. The products from 

the metabolism of lactate are responsible for the characteristic eyes and contribute 

to the flavor, texture, aroma, and appearance of Swiss cheese. Industrially, 

propionibacteria are also used as silage inocula, as probiotics, and for the 

production of vitamin and propionic acid. 

As a preservative, propionic acid extends the shelf-life of food and 

agricultural products by inhibiting molds and some bacteria. Although 

preservatives derived from propionibacteria are available, most propionic acid used 

by the food and agricultural industries is produced by chemical synthesis. If higher 

yields could be obtained, production by fermentation may become economically 

competitive and may offer several advantages to chemical synthesis. 

Increases in propionic acid production by propionibacteria will be 

accomplished by improving both the strains and the fermentation methods 

employed. 

Batch-type fermentations are most often used to produce propionic acid. 

Recently, continuous, semi-continuous, cell immobilization, and cell-recycle 

systems have been advocated for propionibacteria fermentations to increase the 

yield of propionic acid. The major factor that limits the production of propionic acid 

during fermentation is end-product inhibition by the acid. A propionic acid-tolerant 

variant of a strain of P. acidipropionici was sought in this study and a method for 

semi-continuous fermentation with this strain was developed that improved the 

yield of propionic acid. 
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The initial goal of this study was to develop a transposon delivery system in 

strains of Propionibacterium. In order to achieve this goal and to apply genetic 

engineering techniques to improve propionic acid yield in these organisms, a 

reliable and efficient method for introducing DNA into propionibacteria is essential. 

Polyethylene glycol-induced transformation of protoplasts is an effective method for 

introducing foreign DNA into gram-positive bacteria. Other methods, including 

electroporation and conjugation, may also effect gene transfer in strains of 

Propionibacterium. In this study a more efficient method for removing the cell wall 

to form protoplasts was developed. Protoplasts produced by this method, as well 

as whole cells, were used in gene transfer experiments. 

Explanation of Thesis/Dissertation Format 

The thesis follows the alternative format and is divided into four parts 

(papers). Each contains Introduction, Materials and Methods, Results, Discussion, 

and References sections. Each section is written to conform to the specifications 

outlined by the American Society for Microbiology for papers submitted to Applied 

and Environmental Microbiology. Section I was published in Applied and 

Environmental Microbiology 57:2821-2828 (1991). Literature review and general 

summary sections are also included with references cited in those sections 

following the general summary. The candidate conducted the research described 

in each paper, or directed the efforts of undergraduate research assistants as 

noted. 
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LITERATURE REVIEW 

Characteristics and Metabolism of Propionibacteria 

The genus Propionibacterium consists of two principal groups of organisms, 

the "classical" propionibacteria and the acnes group. This review will focus on 

current knowledge of the classical group of propionibacteria. The species P. 

freudenreichii, P. thoenii, P. jensenii, and P. acidipropionici are described as the 

classical or dairy propionibacteria (21). These strains of propionibacteria have 

been isolated from raw milk, Swiss cheese and other dairy products, and some 

strains are used extensively as dairy starter cultures (35, 46, 47, 48, 49). 

The propionibacteria are gram-positive, catalase-posltive, nonsporeforming, 

nonmotile, pleomorphic rods, which are anaerobic to aerotolerant (21). They are 

unique in that they are capable of producing propionic acid, acetic acid, and 

carbon dioxide from the metabolism of lactate (35, 63, 77). 

Data comparing sequences from reverse transcriptase sequences of 16S 

ribosomal RNA have shown that the genus represents a well defined taxon (13). 

Propionibacterium jensenii, P. thoenii and P. acidipropionici form a cluster well 

separated from P. freudenreichii These species also differ from P. freudenreichii 

in the type of diaminopimelic acid in their peptidoglycan, and in their fermentation 

of sucrose and maltose. 

The propionibacteria are metabolically complex organisms that are capable 

of fermenting substrates by a number of different pathways. A number of excellent 

reviews have been written (35, 36, 63, 77) and the reader is referred to these for 

detailed descriptions of the metabolism of these organisms. Briefly, the 

propionibacteria utilize the succinate-propionate pathway in which lactate is 
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converted to propionate via pyruvate and succinate (77). The initial steps in the 

reaction involve the conversion of lactate to pyruvate. Oxaloacetate is then fornied 

in a transcarboxylation reaction and further reduced to succinate by a number of 

enzymes. Succinyl-CoA is then fomied in a CoA transferase reaction and is 

rearranged to (R)-methylmalonyl-CoA which is converted to the (S)-enantiomer by 

a racemase enzyme. Transcarboxylation of (S)-methylmalonyl-CoA yields 

propionyl-CoA and CoA transfer to succinate yields propionate. The overall 

metabolism of 1.5 moles of glucose or 3 moles of lactate theoretically yields 2 

moles of propionate, 1 mole of acetate, and 1 mole of carbon dioxide (77). 

A number of other reactions occur in the propionibacteria that may be 

important in the overall ratios of products formed. A transphosphorylase reaction 

in which oxaloacetate and pyrophosphate are produced from 

phosphoenolpyruvate, carbon dioxide, and inorganic phosphate may influence the 

overall product ratios (77). This reaction is catalyzed by PEP carboxy-

transphosphorylase and is unique in that carbon dioxide Is fixed and the function of 

ATP is replaced by inorganic pyrophosphate. This reaction occurs when high 

carbon dioxide fixation is essential to replace a dicarboxylic acid removed from 

the cycle, as when succinate accumulates as an end product. When this occurs 

methylmalonyl-CoA is not regenerated fast enough to replenish the supply of 

oxaloacetate because the decarboxylation of succinate to propionate is a slow 

reaction in the propionibacteria (77). Therefore, for the cycle to continue, 

oxaloacetate must be regenerated by carbon dioxide fixation, thus altering the 

molar product ratios (18, 19, 77). 

Citric acid cycle intermediates have been detected in propionibacteria and 

under aerobic conditions, metabolism is believed to occur via the citrate cycle (18, 
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19, 77). Wood (77) has shown that the citrate cycle in conjunction with the 

transcarboxylase reaction accounts for some of the atypical fermentation patterns 

observed. Metabolism via the citrate cycle causes shunting of acetyl-CoA from the 

production of acetate into the citrate pathway. Crow (18, 19) has shown that 

strains of propionibacteria used in Swiss cheese making were capable of 

metabolizing aspartate via the citric acid cycle such that 3 moles of aspartate and 

1 mole of propionate were converted to 3 moles of succinate, 3 moles of ammonia, 

1 mole of acetate, and 1 mole of carbon dioxide. Thus, as a consequence of 

aspartate metabolism, more lactate is fermented to acetate and carbon dioxide 

than to propionate. 

Crow (19) suggested that aspartase and carboxytransphosphorylase activity 

explain the presence of succinate in Swiss cheese and the reason that the ratio of 

propionate to acetate is frequently less than 2:1 in cheese samples. Citric acid 

cycle intermediates and enzymes have been shown to be present in 

propionibacteria (77). It appears likely that, as Crow suggests (19), the citrate, 

transcarboxylase, transphosphorylase, and possibly the glyoxylate pathways 

operate during lactate fermentation and affect the product ratios. 

Polysaccharide production from the metabolism of both glucose and lactose 

has also been observed in the propionibacteria (20). These polysaccharides are 

principally polymers of methylpentoses with some glucose and galactose. The 

production of polysaccharides alters the propionate:acetate product ratio by 

increasing the formation of acetate and carbon dioxide without any associated 

propionate production. 

Another important trait of propionibacteria is the ability to produce high cell 

yields from the fermentation of glucose (77). This may have different implications 
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depending on the femientation product desired. If biomass or a biomass-related 

product effluent is desired, high cell yields should mean reduced production costs. 

If a soluble metabolite is desired, high biomass production could mean that too 

little substrate is being converted to desired product, and higher downstream 

processing costs will be needed to remove cells. 

Industrial Uses of Propionibacteria 

In the manufacture of Swiss-type cheeses, the propionibacteria are primarily 

used to form the characteristic eyes (holes) but also contribute to the flavor, 

texture, and shelf life of these cheeses (35, 36, 46, 47, 48, 49, 54). Initially, in 

Swiss cheese making, lactose is fermented to lactic acid by strains of Lactobacillus 

and Streptococcus. During curing, the eyes are produced by the production of 

carbon dioxide from the metabolism of lactate by propionibacteria. The organic 

acids produced by propionibacteria are inhibitory to molds, yeasts, and some 

bacteria and thus improve the shelf life of the final product (30, 34, 35, 40, 54, 63, 

69). The characteristic flavor of Swiss cheese is due, in part, to the production of 

amino acids, metabolic pathway intermediates, and short-chain fatty acids by the 

propionibacteria (36, 46, 47, 48, 49, 50, 51). 

Propionibacteria may also contribute to some of the defects associated with 

Swiss cheese production. Splits often occur in the cold room and frequently are 

referred to as a "second fermentation" (18, 19). Brendehaug and Langsrud (7) 

have suggested that the split defect is a result of carbon dioxide being produced 

from decarboxylation of amino acids by the propionibacteria in the cold room. 

It has been suggested that propionibacteria be used to preserve high-

moisture corn (24) and silage (34). Propionic acid inhibits the growth of molds and 
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yeasts. The preservation of food crops especially important in countries located in 

tropical or subtropical areas where the costs of drying are high (24). However, the 

slow growth of propionibacteria and their poor ability to compete with other bacteria 

have limited their inclusion in commercial silage inoculants. 

Propionibacteria are also used industrially as a probiotic (55, 56), in the 

production of vitamin (32, 78), and for the production of food preservatives (5, 

74). Currently three products of propionibacteria fermentation are sold 

commercially. Microgard, a femiented milk product produced by Wesman Foods in 

Beaverton, OR, is used in the cheese industry to increase the shelf life of cottage 

cheese. CAPARVE, a food preservative produced by PTX Food Corp. of 

Elmsford, NY, is marketed as a "natural mold inhibitor." Upgrade, produced by 

Microlife Techniques of Sarasota, FL, is also used as a preservative. These 

products are made by femientation of natural materials such as milk and whey and 

are sold as "value-added" products. Food preserved with these products can still 

be marketed as a natural product. 

Propionic Acid Production 

As a preservative, propionic acid extends the shelf life of food products by 

inhibiting molds, yeasts, and some bacteria (24, 30, 40, 69). Although 

preservatives derived from propionibacteria fermentations are available, most 

propionic acid is produced by chemical synthesis. An economic analysis 

comparing the cost of producing propionic acid by fermentation to the current 

market price of $1.52 per kilogram propionic acid is shown in Appendix A. Even 

when an inexpensive substrate (corn steep liquor) is used, the cost of producing a 

propionic add product is $7.78 per kilogram propionic acid. 
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If higher yields of propionic acid could be obtained, production by 

fermentations may become economically competitive and may offer several 

advantages to chemical synthesis. These advantages include: possible bacteriocin 

production that can increase the spectrum of antimicrobial activity; the ability to 

label the product as a "natural preservative" and thus allow Its use in the natural 

foods market; and the opportunity to use food processing wastes as fermentation 

substrates, thus lowering production costs while accomplishing waste reduction. 

Several processes have been patented for producing propionic acid by 

fermentation (for review see reference 63.) Batch methods using a variety of 

substrates typically produce 1-3% propionic acid in 7 to 14 days (5, 14, 25, 63). 

The slow growth rate of propionlbacteria and inhibitory effect of propionic acid on 

the growth rate limit the usefulness of these bacteria In commercial processes (58, 

60). To overcome these problems, other processes. Including fed-batch (75), cell 

Immobilization (9, 10, 11, 14), continuous (9, 14), continuous cell recycle (4, 6, 9), 

semi-continuous (25, 75), and multi-stage processes (63) have been used. This 

review will focus on the most current research because reviews of early work in 

this area are available (63). 

Clausen and Gaddy (14) compared the production of organic acids from 

hydrolyzed corn stover in a continuous stirred tank reactor (CSTR) and a 

Immobilized cell reactor (ICR), and developed a process for converting corn stover 

to organic acids. The process involved acid hydrolysis of corn stover to produce 

two sugar streams, one containing xylose and the other glucose. A strain of 

Propionibacterium acidipropionici capable of fermenting both sugars at low pH was 

used. 

The continuous fermentation In the CSTR was studied over a retention time 
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of 5 to 96 hours (14). More than 90% conversion of glucose and 86% conversion 

of xylose were obtained in 72 hours in a CSTR. The maximum productivity for 

both sugar substrates occurred at a 72-hour retention time. Organic acid 

production levels of 3.74 g/l propionic acid and 2.8 g/l acetic acid were reached 

with an initial sugar concentration of 30 g/l. 

To immobilize cells, Clausen and Gaddy (14) coated Raschig rings with a 

20% gelatin and 1.5% agar solution. A seed culture was pumped through the 

column and incubated for 48 hours to establish a film of microorganisms cross-

linked to the rings. Following the acclimation period of 48 hours, the ICR was 

operated with a 28-hour retention time. At this rate, 92% of glucose and 75% of 

xylose were converted to product and 20 g/l of organic acids were produced. This 

represented a major improvement in the productivity (in grams per liter per hour) of 

organic acids. This method also reduced the cost of downstream processing. 

Economic analysis by Clausen and Gaddy (14) showed that cost of the 

recovered acid from corn stover would be $.366/kg. Based on 1984 market values 

for acids, this could allow a profit to be made from the production of acids by 

fermentation. Further benefit could be realized from reduced waste disposal costs. 

Champagne et ah (11 ) used cells of Propionibacterium shermanii 

immobilized in calcium alginate beads in batch fermentations to produce propionic 

acid from acid whey. The advantage to using immobilized cells is that they can be 

easily recovered and used to re-inoculate fresh medium. A high-density inoculum 

was used to decrease the fermentation time. The effects of agitation, temperature, 

pH, type of neutralize^ and re-utlllzation of immobilized cells on acid production 

were examined. Optimum propionic acid production was achieved with whey that 

contained 1 to 2% lactate, neutralized to pH 7.0 with Ca(0H)2. By agitating the 
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beads to remove end-products that tend to accumulate at the center of the beads, 

faster fermentation was achieved but the propionic acid to acetic acid ratio was 

reduced. Beads containing immobilized propionibacteria were used for ten 

consecutive fermentations without contamination. 

Cavin e/a/. (10) investigated the use of a continuous reactor with 

propionibacteria trapped in calcium alginate beads for producing cheese flavors. 

The continuous process was maintained for 20 days. Once the fermentation was 

established, more organic acids could be produced in 30 minutes than could be 

produced by batch fermentation in 96 hours. Immobilizing the cells in beads 

allowed the maintenance of high levels of cells, thus improving the perfomiance of 

continuous fermentations. 

Continuous fermentation with cell recycle has been used to reduce the 

propionic acid concentration in the reactor and to increase the concentration of 

viable cells. One of the limitations to continuous processes is that low organic acid 

production results from low cell densities In the reactors. By using cell recycle, 

high cell densities are obtained, resulting in accelerated fermentations and higher 

organic acid productivity. 

Carrondo et a!. (9) compared the production of propionic acid by batch 

fermentation with three different types of continuous reactor types: CSTR, 

immobilized-cell columnar reactor, and CSTR with ultrafiltration cell-recycle. 

Higher cell densities were maintained in the immobilized cell reactor and the CSTR 

with cell recycle. As a consequence of this, higher organic acid productivity was 

maintained in both reactors than in the other types of reactors. The immobilized 

cell reactor performed the best in these comparisons, producing 100% of the 

maximum theoretical yield of propionic acid. However, immobilized cell reactors 
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were not without their problems. Carbon dioxide produced during fermentation 

reduced the useful reactor volume and limited cell access to fresh nutrients. 

Other authors have reported successful use of continuous fermentation with 

cell recycle (4, 6, 32). In at least one case, two products could be sold: the 

effluent containing organic acids and a concentrated culture that could be used as 

a dairy starter culture (4). The disadvantage of these systems is the extra cost 

and high maintenance associated with the equipment used. If enough of the 

fermentation product can be sold, the extra cost may be recovered. 

Production of Other Compounds 

Most efforts to produce commercial products by fermentation focus on the 

production of a single compound. But for organisms as metabolically versatile as 

the propionibacteria, it may be advantageous to isolate multiple products from a 

single fermentation. The propionibacteria produce a number of metabolic end 

products of commercial value. These include: vitamin (32, 78), amino acids (7, 

19, 50, 51), and carbohydrates (20, 36, 76). 

Vitamin B^g is an essential nutrient for humans, needed for the proper 

development of nerve tissue and red blood cells (32). Unlike propionic acid, 

vitamin B^^ is produced by fermentation since chemical synthesis of the vitamin is 

difficult (32). Production of vitamin by propionibacteria is a cell-associated 

process: therefore, vitamin 8,2 yields are correlated with cell yields. Batch 

processes yield approximately 6 to 8 g dry cells per liter and 2 mg per liter of 

vitamin B^g (32, 36, 78). 

Hatanaka et at. (32) applied a cultivation system with a hollow-fiber module 

to remove propionic acid and acetic acid that inhibit growth during the 
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fermentation. The result was an increase in dry cell and vitamin concentrations of 

35-fold (227 g/l) and 24-fold (52 mg/l), respectively. Though the yield of vitamin 

B,2 from propionibacteria was improved by this method, other industrial strains 

such as Butyribacterium methylotrophicum produce higher amounts (92.5 mg/l) 

(32). 

The propionibacteria are able to synthesize other organic acids and amino 

acids (7, 19, 50, 51). The dicarboxylic acid succinate and the amino acid proline 

may be produced in high enough concentrations to be considered for commercial 

production (41). Succinate is usually found in only trace amounts as a product of 

lactate fermentation (9, 41), However, appreciable amounts of succinate can be 

formed from glucose, glycerol, or aspartate fermentation (9). Proline is produced 

in appreciable amounts during ripening of Swiss-type cheese. Production of 

proline in Swiss cheese by propionibacteria is believed to occur through both 

hydrolysis of casein and through biosynthesis. 

The formation of complex carbohydrates has been reported for 

propionibacteria when grown on glucose-based medium or medium containing a 

high lactose concentration (35, 76). Crow (20) suggested that low carbon recovery 

and low propionate to acetate ratios during fermentation by P. freudenreichii subsp. 

sAerma/?//'ATCC 9614 were caused by the production of a polysaccharide 

containing methylpentose (major component), glucose, and galactose. Stjernholm 

(76) identified the carbohydrate produced by three species of propionibacteria as 

1-0-a-D-glucopyranosyl-a-D-glucopyranoside, commonly known as trehalose. In 

the food industry, trehalose is being used as a cryoprotectant to preserve foods 

during freeze drying or quick freezing (67). Other carbohydrates produced by 

propionibacteria (20, 35) may be effective stabilizers, thickeners, or gums for use 
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as food additives. 

Tfiese few examples of other products that can be derived from 

propionibacteria femientation illustrate the diversity of these organisms. The 

challenge for the industrial microbiologist or engineer will be in developing the 

downstream processing needed to recover the various products. 

Methods of Culture Improvement 

Maximizing the production of products from propionibacteria femientations 

will require optimization of both the fermentation process and proper selection or 

manipulation of the strains used. Traditionally, cultures have been selected for 

fermentations by screening natural isolates for hyperproducing strains or selecting 

mutants capable of hyperproduction of product under specific conditions (64). 

Recently, with the proliferation of genetic tools available, the possibility of using 

genetic engineering to alter metabolic pathways or even create new pathways 

exists (42). 

Overproduction of products has been a target in genetic engineering of 

industrial strains (64). Various techniques have been developed for overproduction 

of cloned gene products such as uses of runaway-replication plasmids, efficient 

expression vectors, and on-off regulation of gene expression (41). However, 

before these techniques can be applied to propionibacteria, more information on 

the basic biology of the propionibacteria and development of gene transfer 

techniques will be necessary. 
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Genetics of Propionibacteria 

Relatively little is known about the genetics of the propionibacteria. 

Methods for isolation of DNA from propionibacteria have been developed (66) and 

15 strains were screened for the presence of plasmid DNA (65). Seven distinct 

plasmids were isolated that ranged in size from 4.4 megadalton (MDa) to greater 

than 200 MDa. Restriction mapping and DNA hybridization revealed sequence 

homology among many of the plasmids found in propionibacteria. Only two of the 

seven plasmids isolated had no homology with any other Propionibacterium 

plasmids. 

Derivatives cured of plasmids pRGOl, pRG02, pRG03, and pRG05 were 

screened for resistance to 18 antibiotics and antimicrobials, bacteriocin production, 

and the fermentation of 15 carbohydrates. Only two phenotypes, cell clumping 

and lactose utilization, were tentatively linked to plasmids pRG05 isolated from 

P. jensenii P38 and pRG03 from P. freudenreichii P93, respectively (66). Attempts 

to clone the lactose utilization genes into E co/fwere unsuccessful. 

Naud et al. (59) were able to induce production of spherical cells of 

Propionibacterium freudenreichii by growing cells under growth-limiting conditions 

and then plating on medium containing chloramphenicol or erythromycin. This 

treatment produced a change in morphology, a simultaneous resistance to 

antibiotics, a change in fermentation patterns, and the appearance of at least one 

new enzyme. Also, three plasmids not present in the parental strains were found 

in cell extracts of round cells. No information was presented to confirm that round 

cells were propionibacteria and not contaminants. 

Recently, the structural genes for methylmalonyl-CoA mutase were 

successfully cloned from Propionibacterium shermanii into E. coii (57). This 
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enzyme catalyzes the structural rearrangement of succinyl-CoA Into (2R)-

methylmalonyl-CoA as part of the propionic acid femientation. Oligonucleotide 

probes derived from purified peptide fragments were used to screen a P. shermanii 

library consisting of 1.0 to 1.8 kb fragments in plasmid pUC13. Positive 

transformants were identified, subcloned into plasmids M13 mp 18 and M13 mp 

19, and sequenced. A two-gene sequence was identified. Nucleotide sequence 

analysis of a 4.5-kb piece of DNA showed that the region upstream of the first 

gene did not contain consensus promoter sequences found in other procaryotes. 

However, an E co/AIike potential ribosome-binding site was present before the 

start of each gene, and when the genes were placed on a plasmid behind a strong 

E CO//promoter both mutase genes were expressed in E coH. The two genes 

were found to lie very close together with the last G of the C-terminal lysine of the 

mutA gene being the first base of the GTG initiation codon of the mutB^ene. A 

region of inverted symmetry, which is a potential transcription termination stmcture, 

was present 20 bp downstream of the termination codon of the second gene. 

These results suggest that the genes are probably transcribed as an operon. 

More information is needed on the basic genetics of these organisms, 

especially the mechanism of plasmid replication and gene expression. The small 

cryptic plasmids present in strains of Propionibacterium will be useful in the 

construction of cloning vectors. However, nothing is known about the mode of 

replication of these plasmids or the compatibility of these plasmids in other 

bacteria. Also, information on how genes are expressed in propionibacteria is 

needed. Isolation and genetic analysis of promoters and the origin of replication 

from propionibacteria plasmids will provide valuable information and also form the 

basis for cloning vectors. Also needed: an examination of restriction-modification 



www.manaraa.com

16 

systems, the physical and genetic map of the chromosome, and the structure and 

control of genes. 

Gene Transfer Methods 

Transfer of igenetic information in gram-positive bacteria can occur by at 

least four mechanisms: transformation, conjugation, transduction, and protoplast 

fusion. These gene transfer methods are essential for genetic studies and 

application of genetic engineering for strain construction. 

Transformation is defined as the process by which a cell takes naked DNA 

from the surrounding medium and expresses the newly acquired genes (43). 

Some gram-positive bacteria are able to undergo "natural transformation," the most 

well characterized of which include Bacillus subtiUs, Streptococcus sanguis, and 

Streptococcus pneumoniae (73). However, most gram-positive bacteria do not 

possess natural transformation systems, and therefore artificial techniques that 

allow direct cloning of foreign genes into these organisms have been developed. 

One method commonly employed in gene cloning is polyethylene glycol-

induced transformation of protoplasts (cells with the cell wall removed). Protoplast 

transformation was first described in Streptomyces (3) and yeast (38) and then 

extended to B. subtllls by Chang and Cohen (12). Most of the published protoplast 

transformation procedures in bacteria are modified versions of the original method 

of Chang and Cohen. The general method of protoplast transformation is as 

follows; cells are grown in an appropriate medium, harvested by centrifugation, 

washed, and resuspended in buffer containing an osmotic stabilizer (usually a 

carbohydrate or amino acid). Protoplasts are formed by adding muralytic enzymes 

to the cell suspension and incubating for the appropriate time. Once protoplasts 



www.manaraa.com

17 

are formed, the DNA is added to the suspension followed immediately by addition 

of polyethylene glycol. After an incubation period, the protoplasts are washed, 

resuspended in broth to allow for expression of the cloned genes, and then plated 

onto selective media supplemented with an osmotic stabilizer. 

More recently, a procedure temied electroporation has been successfully 

applied to gram-positive bacteria. Electroporation is now an established procedure 

for transforming a variety of cell types (8, 22, 53, 71). Electroporation involves 

polarization of the cell membrane by the application of an electric pulse, resulting 

in the formation of transient pores in the cell membranes (8, 71). The resultant 

pores are large enough for macromolecules such as DNA to pass through and, as 

long as the electric field does not exceed a critical limit, the permeability is 

reversible. Unlike protoplast transformation, electroporation requires the purchase 

of expensive electroporators. 

Conjugation is a mechanism of gene transfer that occurs when a donor and 

recipient cell are in close physical contact (43). In gram-positive bacteria 

conjugation can be performed in broth (15), by forced physical contact on 

membrane filters (17, 70), or by plating cells on an agar medium (43). Gene 

transfer from the donor to the recipient strain is usually mediated by a conjugative 

plasmid or transposon that possesses transfer capabilities. 

The conjugative transposons lx\916, first identified in Enterococcus faecatis 

DS16 (26, 28), and ln919ixon\ Streptococcus sanguis FC1 (23) have been useful 

tools for genomic analyses of gram-positive bacteria (16, 15, 17, 26, 37). These 

transposons possess a number of similar characteristics that have been exploited 

for both genome mapping and targeting genes for cloning in E coH (29). Both 

transposons encode tetracycline resistance, are similar in size (15 and 16.5 kb for 
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1t\916 and Tn^/5, respectively), are capable of conjugative transfer at frequencies 

ranging from 10 ® to 10"®, and can randomly insert into either the chromosome or 

plasmids of host cells. Both transposons have been transferred to a number of 

gram-positive bacteria by filter mating. A high-frequency conjugal delivery system 

for Tn 5/5 has been developed in Lactococcus lactis (37) and for TnS/âin 

Enterococcus faecalis (28) 

Transfer of conjugal plasmids can also be used to facilitate genetic analysis 

and as an alternative gene transfer method in strains In which other gene transfer 

systems are either inefficient or don't exist (15, 17, 29, 31, 33, 45, 52, 61, 70, 72, 

79). Plasmids pAMpi (15, 17) and pIPSOl (39) are capable of conjugal transfer 

into a wide range of hosts and have been used extensively in genetic studies of 

gram-positive bacteria (2, 15, 27, 31, 33, 43, 45, 61, 70, 72, 79). Plasmid pAMpI 

isolated from E faecalis DS5 is a 26.5 kb-plasmid expressing MLS (macrolide-

lincosamide-streptogramin B) antibiotic resistance. Plasmid pIPSOl first isolated 

from Streptococcus agatactiae is a 30.2-kb plasmid that encodes resistance to 

both MLS antibiotics and chloramphenicol. Both plasmids have been 

characterized at the molecular level and have been used to develop gene cloning 

and transposon delivery systems (26, 44). 

Certain bacteriophages are able to transfer host genes between bacterial 

cells (43). Transduction is not a method of gene transfer commonly employed in 

gene cloning experiments but has been used for mapping the genome of bacteria 

and strain construction. 

Protoplast fusion of two phenotypically distinct strains can cause 

recombination of genetic information to occur (43). in this procedure, protoplasts 

of two strains are formed and caused to fuse by addition of polyethylene glycol. 
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Regeneration of the cell wall results In whole cells that may form recombinants 

containing genetic information from both strains. As with transduction, protoplast 

fusion has had more application in genome mapping than in gene cloning. 

Gene Transfer in Propionibacteria 

A procedure for the production and regeneration of protoplasts was first 

developed by Baehman and Glatz (1). Baehman and Glatz (1) used lysozyme 

(20 mg/ml final concentration) to remove the cell wall from P. freudenreichii strain 

P104. Optimum protoplast fondation was achieved by using logarithmic-phase 

cells suspended in Tris-HCI buffer containing 0.5 M sucrose and 10 mM MgClg. 

Greater than 99% of the cells were converted to protoplasts. Plating by the 

overlay method onto regeneration medium containing 0.5 M sucrose and 2.5% 

gelatin resulted in regeneration frequencies of 10 to 30%. Attempts to transform 

protoplasts with plasmid DNA by the method of Chang and Cohen (12) were 

unsuccessful. 

Other groups have since reported formation and regeneration by similar 

methods (68). Protoplasts of P. shermanii 9614 were used to examine cell 

wall, membrane, and intracellular fractions for peptidase activity (68). Protoplasts 

were produced by pre-conditioning cells in a 20% (wt/vol) sucrose solution 

incubated for 2 hour at 4°C with shaking. Pre-conditioned cells were resuspended 

in buffer and treated for 90 min with lysozyme. 

Pal (62) later examined other factors that affect protoplast production. By 

incubating the cells in an anaerobic environment and washing the cells after 

harvesting and after lysozyme treatment, consistently higher regeneration 

frequencies were obtained. Several factors were investigated to develop a 
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procedure for polyethylene glycol (PEG)-lnduced transformation of protoplasts of 

strain P104. The amount of DNA added to the protoplast suspension ranged 

between 1 and 12.5 ng. The concentration of PEG varied from 40 to 60%. The 

incubation time for the protoplast-PEG-DNA reaction mixture ranged between 4 

and 90 min. The length of the incubation time for expression of plasmid DNA in 

transformants was 20 hours. 

Erythromycln-resistant putative transformant colonies were obtained in 

transformation with plasmid pE194, a small Staphylococcus aureus plasmid that 

codes for erythromycin resistance (62). However, no free plasmid DNA was 

observed when total DNA extracts from these colonies were examined by agarose 

gel electrophoresis. Purified DNA from 19 putative transformants was transferred 

to a nitrocellulose membrane in a slot blot apparatus and hybridized with a 

biotinylated pE194 probe. After hybridization, the DNA from eight cultures gave a 

positive color reaction, while the DNA from strain P104 gave no reaction. 

Pal speculated that plasmid DNA may have integrated into the 

chromosome. To test this hypothesis, chromosomal DNA from eight putative 

transformants was digested with a restriction enzyme that cut pE194 at one site. 

The digested DNA was transferred to nitrocellulose and probed with biotinylated 

pE194. The DNA from two cultures hybridized with the pE194 probe; no 

hybridization with PI04 DNA was observed. One culture produced two bands, 

indicating possible integration of plasmid pE194 into the chromosome. Only one 

band was observed for the other culture, suggesting that the plasmid had not 

integrated into the chromosome. However, definitive proof that the erythromycin-

resistant colonies were true transformants was not obtained by Pal since the 

hybridization produced only faint bands that were not even dark enough to be 
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photographed. 

Luchansky et al. (53) transformed cells of Propionibacterium Jensenii strain 

B-77 by electro-transformation. However, the transformation frequencies reported 

were too low to be useful for gene cloning. Successful gene transfer into 

propionibacteria by conjugation or protoplast fusion has not been reported. 
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SECTION 1 

PROPIONIC ACID PRODUCTION BY A PROPIONIC ACID-TOLERANT 

STRAIN OF PROPIONIBACTERIUMACIDIPROP/ONICim BATCH 

AND SEMICONTINUOUS FERMENTATION 
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ABSTRACT 

A propionic acid-tolerant derivative of Propionibacterium acidipropionici 

strain P9 was obtained by serially transferring strain P9 through broth that 

contained increasing amounts of propionic acid. After one year of repeated 

transfers, a strain (designated P200910) capable of growth at higher propionic acid 

concentrations than P9 was obtained. An increase in the proportion of cellular 

straight chain fatty acids and uncoupling of propionic acid production and growth 

were observed for strain P200910. Growth rate, sugar utilization, and acid 

production were monitored during batch and semicontinuous fermentation of 

semidefined medium and during batch femientation of whey permeate for both 

strain P200910 and strain P9. The highest propionic acid concentration (47 g/l) 

was produced by P200910 in a semicontinuous fermentation. Strain P200910 

produced a higher ratio of propionic to acetic acid, utilized sugar more efficiently, 

and produced more propionic acid per gram of biomass than did its parent in all 

fermentations. 
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INTRODUCTION 

Strains of the genus Propionibacterium are used in several industrial 

processes because of their ability to convert lactate and carbohydrates to propionic 

acid, acetic acid, and carbon dioxide. The metabolism of glucose by 

propionibacteria theoretically yields 2 moles of propionate, 1 mole of acetate, and 1 

mole of carbon dioxide from 1.5 moles of glucose (29, 41). Propionibacteria are 

primarily used by the dairy Industry for the production of Swiss-type cheeses. The 

products from the metabolism of lactate are responsible for the characteristic eyes 

and contribute to the flavor, texture, and shelf life of Swiss cheese (16). Though 

they are used mainly in cheese production, propionibacteria are also used 

industrially as a silage inoculum (12), as a probiotic (24, 25), and for production of 

vitamin (14, 29, 42) and propionic acid (29). 

As a preservative, propionic acid extends the shelf life of food products by 

inhibiting molds and some bacteria (15, 20, 22). Although preservatives derived 

from propionibacteria fermentations are available, most propionic acid used by the 

food industry is produced by chemical synthesis (29). If higher yields of propionic 

acid could be obtained, production by fermentation may become economically 

competitive and may offer several advantages to chemical synthesis. These 

advantages include: bacteriocin production (17) that can increase the spectrum of 

antimicrobial activity, the ability to label the product as a "natural preservative," and 

an opportunity to use food-processing wastes as fermentation substrate, thus 

lowering disposal costs. 

Several processes have been patented for producing propionic acid by 

fermentation (29). Batch methods using a variety of substrates typically produce 1-
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3% propionic acid in 7 to 14 days (2, 3, 4, 29). Other processes, including fed 

batch (16), cell immobilization (6, 7), continuous (2, 4, 6, 8, 29), semicontinuous 

(13), and multistage processes (29) have been used to improve the yield of 

propionic acid. Despite these efforts, the maximum reported yield of propionic acid 

obtained by fermentation is still too low to be economically competitive with 

chemical synthesis. 

The major factor that limits the production of propionic acid during 

fermentation is end-product inhibition by the acid (22). To overcome the inhibitory 

effect of propionic acid, continuous processes combined with cell recycling have 

been employed to remove metabolic end products (27, 28). Though these 

processes were able to increase the yield, the production of propionic acid was not 

large enough to offset the higher costs of continuous processes. Mutant strains 

resistant to end products have been used to increase the production of ethanol 

from Clostridium thermocefium (35), butanol from Clostridium acetobutyiicum (23), 

and ethanol from yeasts (21). 

To improve the yield of propionic acid, we have developed a propionic acid-

tolerant mutant, designated P200910, by using a simple enrichment technique. 

When used in a semi-continuous fermentation, P200910 produced greater 

amounts of propionic acid than did the parental strain. We report here the 

characterization of P200910 in batch fermentation and the development of a 

semicontinuous process. Also, the physiological changes that occur in the mutant 

strain and their contribution to acid tolerance are discussed. 
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MATERIALS AND METHODS 

Strains and culture maintenance. Propionibacterium acidipropionici strain 

P9 was obtained from the culture collection of the Department of Food Science 

and Human Nutrition, Iowa State University. Strain P9 and its propionic acid-

tolerant derivative P200910 were grown in sodium lactate broth (NLB) at 32°C (19). 

Working cultures were maintained on sodium lactate agar (NLA) and stored at 4°C. 

All cultures were permanently stored at -70°C in NLB supplemented with 10% 

glycerol. Fermentation broth (FB) consisted of 0.6% yeast extract, 0.3% trypticase, 

and 3% glucose at pH 7.0. Glucose was sterilized separately in the autoclave and 

added aseptically to the fermentation broth before the start of fermentation. 

Culture conditions. Primary cultures were prepared by inoculating 10 ml of 

NLB with isolated colonies from an NLA plate and incubating at 32°C for 24-36 h. 

For small-scale cultures, a 1% inoculum of this culture was transferred into 10 ml 

of the appropriate fresh medium and incubated at 32°C. For 500-ml fermentation 

experiments, a 1% inoculum of the primary culture was transferred to 25 ml of FB 

in a 100-ml Erienmeyer flask. The culture was incubated at 32^0 and harvested 

while in exponential phase (ODggo of 0.8). All seed cultures were incubated without 

agitation. The entire contents of the flask were used to Inoculate the fermenter. 

Growth rate measurements. Small-scale (10 ml) cultures of P9 and 

P200910 were grown in the desired medium, incubated at 32°C, and observed for 

changes in optical density at 550 nm (OD550) with a Spectronic 21 

spectrophotometer (Milton Roy, Rochester, NY). Specific growth rates were 

determined by plotting the natural log (In) of the ODggg vs. time. Regression 

analysis was performed on the values taken from the linear portion of the curve, 
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and the specific growth rate was calculated from the slope of the least-squares 

regression line. Analysis of variance was performed on data obtained from 

replicate trials. 

Fatty acid analysis. One-liter cultures of strains P9 and P200910 were 

grown in NLB for 48 h at 32°C to an ODggg of 1.0. The cells were removed by 

centrifugation and washed 3 times with 0.01 M phosphate buffer (pH 7.0). Fatty 

acid methyl esters (FAMES) of cellular lipids were prepared by the method of Baer 

et at. (1) with the following modifications. The methanolic-base reagent was 

prepared by mixing 170 ml sodium methoxide (Fluka Chemie AG, Buchs, 

Switzerland) with 750 ml anhydrous methanol. A 0.5-g sample of wet-packed 

cells, 1 ml benzene, and 1 ml methanolic-base reagent were added to a screw-cap 

test tube (18 x 150 mm). The tube was sealed and heated in a water bath at 80°C 

for 20 min. The sample was cooled to room temperature before 3 ml water and 3 

ml diethyl ether were added. The contents of the tube were mixed, the lower 

aqueous phase was removed, and the upper benzene-ether layer was washed 

twice with 2 ml water. Residual water was removed by drying over sodium sulfate 

crystals. The solvent layer, containing the FAMES, was transferred to 1-dram vials 

and stored under nitrogen at -20 ®C. 

Immediately before analysis, the remaining solvent was removed by 

evaporation under a gentle stream of nitrogen. The FAMES were resuspended in 

50 111 hexane and a 1-|il sample was injected into a Varian 3700 gas 

chromatograph (Varian Aerograph, Palo Alto, CA) equipped with a flame ionization 

detector and a fused silica capillary column (15 m x 0.32 mm) coated with SP-

2330. The column temperature was programmed for 100°C to 230°C at 4°C/min. 

The injection and detector temperatures were set at 230°C. An integrator (model 
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3396A Hewlett-Packard, Arondale, PA) was used to analyze data and plot 

chromatograms. The FAMES were identified by comparing the retention times with 

FAME standards (Analabs, Foxboro Co., North Haven, CT), The peak heights 

were measured, and the percentage of each peak in the sample was calculated 

from the ratio of the individual peak height to the sum of the heights of all detected 

peaks. 

Batch fermentation. Batch femientations (500-ml working volumes) were 

performed in a model C30 bench-top fermenter (New Brunswick Scientific Co., 

New Brunswick, NJ) with accessory pH controller (model pH-40, New Brunswick) 

or a Multigen bench-top fermenter (New Brunswick) equipped with a model TTT2 

automatic titrator (Radiometer, Copenhagen, Denmark) for pH control. The vessel 

with 450 ml of FB was sterilized in the autoclave for 20 min, and 50 ml of a sterile 

30% glucose solution was added aseptically. Temperature was controlled at 32°C, 

agitation rate was 200 rpm, and pH was maintained at 7.0 by addition of 2 N 

NaOH. 

To determine if acid production and cell growth decreased during batch 

fermentation because of product inhibition or nutrient depletion, spent broth was 

obtained from a batch fermentation, centrifuged to remove cells, and sterilized by 

filtration through a 0.22-jim filter. A 9-ml sample was placed in screw-cap test 

tubes, and 1 ml of filter-sterilized 10X FB was added to each tube. A 2% inoculum 

of an active 48-h culture of either P9 or P20091 was added and the tubes were 

incubated at 32°C. Culture growth over time was monitored at ODgg,,. Control 

tubes contained FB and spent broth with no added nutrients. 

Semicontinuous fermentation (SCF). Initial femientation conditions were 

the same as described for batch fermentation. After the initial 48 h of 
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fermentation, 50 ml of 10X FB and 25 ml of a 60% glucose solution were added 

while an equal volume of spent FB was removed from the fennenter. This 

procedure was repeated every 24 to 36 h until the measured amount of propionic 

acid in the fermentation broth did not increase. 

Fermentation of whey permeate. Sweet whey was obtained from Swiss 

cheese production in the Food Science and Human Nutrition Department, Iowa 

State University. The whey was filtered through an Amicon DC10L ultrafiltration 

unit containing a H5MP01-43 0.1-pm hollow-fiber filter cartridge (Amicon Div., W.R. 

Grace and Co., Danvers, MA) and filtered a second time through a S10Y10 spiral-

wound ultrafiltration cartridge with a 10,000 MW cutoff (Amicon). Whey permeate 

was adjusted to pH 7.0 by addition of NaOH, filter-sterilized, and stored at 4°C. 

Batch fermentations of whey permeate in 9-1 working volumes were performed in a 

model NLF 22 fermenter (Bioengineering Corp., Wald, Switzerland). The culture 

was grown in the fermenter at 32°C, pH 7.0, and agitated at 200 rpm. 

Temperature, pH, and agitation were monitored and controlled by computer 

(Nomad System Inc., San Jose, CA). 

Analysis of products. Glucose, lactose, propionic acid, and acetic acid 

were separated by high-performance liquid chromatography with a Waters model 

501 pump (Waters, Div. of Millipore, Milford, MA) and a HPX-87H column (Bio-

Rad, Richmond, CA) operated at 65°C, with 0.012 N H^SO^ (pH 2.0) as the mobile 

phase at 0.8 ml/min flow rate. Peaks were detected with a Waters differential 

refractometer (model R401). Samples for analysis were centrifuged to remove 

cells, filtered through 0.22-^im filter, and stored at -70°C before analysis. A 

Maxima 820 software program (Waters) was used to analyze the data and plot the 

chromatograms. The product concentration was calculated by comparing the peak 
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areas with those of external standards (Aldrich Chemical Co., Milwaukee, Wl). 

Biomass was determined from a standard curve of optical density vs. dry 

weight. Dry weights for the standard curve were obtained by filtering aliquots of 

culture through prerinsed, dried, and weighed 0.22-nm filters, rinsing with 0.1 M 

phosphate buffer (pH 7.0), and drying filters in a microwave oven (Tappon/O'Keefe 

& Merrit, Chicago, IL). The standard curve was plotted from the mean values of 

two determinations, and biomass was obtained from the least-squares regression 

line. 

All fermentations were performed at least twice. Results are the averages 

of these replicate trials. 
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RESULTS 

Development of a propionic acid-tolerant strain. The propionic acid-

tolerant strain was derived from strain P9 by a modification of the serial dilution 

method of Lin and Blascheic (23). A 1% inoculum of a primary culture of P9 was 

transferred to a series of tubes with 10 ml NLB that contained 0.5 to 5% propionic 

acid. The tubes were incubated at 32°C for 24 h, and the change in ODggg was 

monitored. Cells from the broth with the highest propionic acid concentration that 

showed growth were repeatedly transferred into fresh medium containing that 

concentration of propionic acid. Once the growth rate of the tolerant strain 

reached approximately 80% of that of the unchallenged parental strain, the tolerant 

strain was transferred into broth containing a slightly greater amount of propionic 

acid, and the process was repeated. 

After one year of such repeated transfers, a strain designated P200910 was 

obtained that was able to grow at higher concentrations of propionic acid than P9. 

Electron micrographs of strain P200910 showed no differences in morphology from 

that of the parent strain (data not shown). Strain P200910 is identical to the 

parental strain in Gram reaction, fermentation of sucrose, maltose and mannitol, 

reduction of nitrate, and pigment production. 

Growth characteristics of P200910. A plot of the specific growth rates for 

P200910 and P9 in NLB that contained different concentrations of propionic acid is 

shown in Fig. 1. Analysis of variance showed significant differences (P<0.05) 

between the growth rates of P9 and P200910 at propionic acid concentrations 

between 1 and 7%. No statistically significant differences were observed for 

growth rates of the two strains at 0% or 8% propionic acid. However, P200910 
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had a slightly faster specific growth rate at 8% propionic acid (0.047 vs. 0.033) and 

a slightly slower specific growth rate (0,185 vs. 0.199) at 0% propionic acid. In 

NLB, strain P200910 had a longer lag time and grew to a lesser final cell density 

than did P9, even after several transfers. 

The stability of strain P200910's tolerance to propionic acid was determined 

by serially transferring this strain 10 times in NLB or in NLB with 0.5% propionic 

acid and then inoculating these cultures into NLB with 2% propionic acid. No 

difference in growth was observed if inocula were serially transferred with or 

without propionic acid. 

Fatty acid analysis. Fatty acid analysis was performed to characterize any 

physiological changes associated with propionic acid tolerance. Typical 

chromatograms are presented in Fig. 2. Table 1 lists the relative amounts of the 

12 major peaks that represent greater than 90% of the total peaks detected. Eight 

of the peaks have been identified by comparing their retention times with those of 

known FAME standards. These peak identifications agreed with previously 

published fatty acid profiles of propionibacteria (18). The predominant fatty acids 

were 15- and 17-carbon iso- and anteiso-branched-chain and straight-chain fatty 

acids. Hofherr et ai (18) also reported the presence of hydrocarbon peaks 

tentatively identified as branched 19- and 21-carbon species. In this work, peaks 

10 and 12 have retention times corresponding to 19:0 and 20:0 straight-chain fatty 

acids. Four peaks could not be identified. The relative amounts of the 

predominant fatty acids were different for strains P9 and P200910. Strain 

P200910 had less branched-chain and more normal-chain fatty acids. 
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Fig 1. Specific growtli rates of P9 (•) and P200910 (•) in NLB tiiat 

contained various amounts of propionic acid. Error bars represent 

standard deviations for four replicate triais. Specific growtii rates 

were detemiined by plotting the natural log (In) of the ODggq vs. time. 

Regression analysis was performed on the values taken from the 

linear portion of the curve, and the specific growth rate was 

calculated from the slope of the least-squares regression line. 
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Typical gas chromatograms of fatty acid metyl esters prepared from 

strains P200910 (A) and P9 (B). 
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Table 1. The identity and relative amounts of the major fatty acids in cellular 
lipids of strains P9 and P200910, as detennined by gas 
chromatography. 

% Fatty Acids Present 

Peak # Identification® P9 P200910 

1 i15:0 16.9 15.4 

2 a15:0 18.3 17.5 

3 n15:0 13.6 16.6 

4 HC 6.4 6.1 

5 HC 2.2 3.5 

6 117:0 0.9 0.9 

7 a17.0 11.4 4.8 

8 n17:0 5.0 8.3 

9 HC 11.4 9.2 

10 HC" 8.2 9.6 

11 HC 4.1 3.5 

12 HC" 1.4 4.4 

° n = normal; a = anteiso; i = iso; HC = hydrocarbon. 
^ Unidentified hydrocarbon, retention time corresponds to 19:0 straight-chain fatty 
acids. 
° Unidentified hydrocarbon, retention time corresponds to 20:0 straight-chain fatty 
acids. 
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Batch fermentation. Data from typical batch fermentations for strains P9 

and P200910 are shown in Fig. 3, and selected parameters are tabulated in Table 

2. The strains had similar lag times (12 h). Growth rate during exponential phase 

of P200910 (0.84 g/liter per h) was faster than that of P9 (0.45 g/liter per h), but 

strain P9 remained in exponential phase longer (36 h) and reached a larger final 

biomass. Strain P9 entered stationary phase at 48 h; strain P200910 at 28 h. 

After 60 h of fermentation, P200910 had produced more propionic acid than 

had P9. Propionic acid produced per gram of biomass was much greater for 

P200910 (0.91 vs. 0.50). Strain P200910 produced propionic acid faster during 

exponential phase, and continued production after reaching stationary phase. 

Propionic acid production was fastest between 20 and 38 h for both strains. Final 

acetic acid concentration and rate of acetic acid production were similar for both 

strains but acetic acid produced per gram biomass was greater for strain P200910 

than for P9 (0.21 vs. 0.13). Strain P200910 converted glucose to propionic acid 

somewhat more efficiently than did P9, but both strains produced less acid than 

the theoretical maximum. Propionic acid to acetic acid (PA:AA) ratios for both 

strains were higher than the theoretical ratio of 2:1. 

Strain P200910 exhibited biomass and propionic acid production patterns 

typical of nongrowth-associated product formation, whereas P9 followed typical 

growth-associated product formation patterns (31). Fastest growth of P200910 

occurred earlier than the period for maximum propionic acid production or 

maximum glucose utilization (Fig. 4). In contrast, periods of maximum growth and 

glucose utilization coincided for strain P9. 

To determine whether acid and biomass production in batch fermentations 

eventually decreased because of product inhibition or nutrient depletion, the growth 
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rates of strains P9 and P200910 in FB were compared in spent fermentation broth 

tiiat contained 0.6% propionic acid (SB) and in spent broth supplemented with 

fresh femientation broth (SBFB) (Table 3). Both strains showed little growth in SB. 

Growth rates of P9 and P200910 grown in supplemented SB were 76% and 79%, 

respectively, of their growth rates in FB. Nutrient depletion and product inhibition 

may both play a role in growth limitation during batch fermentations, though it 

seems that nutrient depletion has a greater effect. 

Whey permeate fermentation. Performance of P9 and P200910 in batch 

fermentation of a natural substrate, cheese whey permeate, was evaluated (Fig. 5 

and Table 2). Growth and acid production were much slower than in batch 

fermentations in defined medium. Even after 8 days of fennentation, only 44% and 

36% of the lactose had been used by P200910 and P9, respectively. Although 

total biomass and organic acid concentrations were lower in whey permeate than 

in semidefined medium, the yields of propionic and acetic acid per gram sugar 

utilized were greater in whey permeate fermentations. 

Strain P200910 grew to a much lower biomass concentration than did P9, 

but it produced more propionic acid. Its production of propionic acid per gram 

biomass was much greater than that of strain P9 (5.4 vs. 1.1). Much more lactose 

was converted to propionic acid than to biomass or acetic acid by P200910. The 

propionic;acetic acid ratio was about double that of strain P9. 
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Fig. 3. Growth, glucose utilization, and acid production by strains P200910 

(A) and P9 (B) in semidefined medium in a batch fermentation 

process. Symbols: *, biomass; 0, glucose; O, propionic acid; •, 

acetic acid. Results are the averages of three replicate trials. 
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Table 2. Characteristics of fermentations with strains P9 and P20010. 

strain Medium* Process*" 
(g/liter) 

Final acid 
concn"' (g/liter) 

Volumetric 
productivity* 

(g/llter-h) 

V 
(g/g) 

Yield" (% 
theoretical 
maximum) 

il
 

PA AA PA AA X PA AA PA AA 

P9 FB Batch 23 11.6 3.0 0.33 0.07 0.59 0.30 0.08 54 36 3.0 

P200910 FB Batch 15 13.6 3.1 0.39 0.07 0.34 0.35 0.08 64 36 3.5 

P9 WP Batch 7.8 8.8 3.4 0.044 0.002 0.37 0.55 0.21 - - 2.1 

P200910 WP Batch 1.7 9.2 1.9 0.048 0.007 0.13 0.70 0.14 - - 3.9 

P9 FB SCF 78 32 9.1 0.26 0.10 0.74 0.31 0.09 56 41 2.9 

P200910 FB SCF 58 47 10.5 0.37 0.12 0.55 0.45 0.10 82 45 3.6 

" FB, femientation broth; WP, whey permeate. 
" Batch = 60-h femientlon in FB or 8-d fermentation In WP, SCF = semlcontinuous fermentation for 8 d. 
® maximum biomass production. 

PA, propionic add; AA, acetic add. 
" l\/laxlmum rate of production calculated from the linear portion of the best fit curve from Figs. 3, 5, 6. 
' Yield coefficient for product on carbon substrate, g of product produced per g sugar utilized. 
° Calculated as the percent of the theoretical maximum yield of 55 g propionic acid and 22 g acetic acid per 100 
g glucose (41). 
" Molar ratios of propionic and acetic acid produced. 
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Fig. 4. Rates of biomass (*) and propionic acid (O) production by strains 

P200910 (A) and P9 (B) in semidefined medium In batch 

fermentation process. Rates were calculated from the averaged 

results from three trials. 
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Table 3. Specific growth rates of P9 and P200910 grown for 24 h in spent 
fermentation broth or a mixture of spent and fresh femientation broth. 

Specific Growth Rate (h'Y 

Strain T
I 

CD
 SB° sbfb" 

P9 0.21 0.05 0.16 

P200910 0.14 0.04 0.11 

" Specific growth were determined by plotting the natural log (In) of the ODggg vs. 
time. Regression analysis was performed on the values taken from the linear 
portion of the curve, and the specific growth rate was calculated from the slope of 
the least-squares regression line. 
^ Fermentation broth. 
° Spent fermentation broth, obtained from a batch fermentation experiment after 96 
h of cultivation, containing 0.6% propionic acid and no detectable glucose. 

Spent femientation broth mixed with 10X concentrated fresh fermentation broth 
at 9:1 volivol. 
Values given are the averages from two separate experiments. 

Semicontinuous fermentation. Strains P9 and P200910 were cultivated in 

a semi-continuous fermentation (SCF) in which fresh femientation broth was added 

to the vessel at regular intervals, at which times an equal volume of spent broth 

was removed. Data are presented in Fig. 6 and Table 2. Much greater final 

concentrations of biomass and organic acids were obtained in semicontinuous than 

in batch fermentations. These were achieved by extending growth and acid 

production over a longer time and by supplying more sugar as the fermentation 

progressed. Yields of biomass from sugar used were greater in semicontinuous 

than in batch fermentation. Yields of acids from sugar used were approximately 
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the same as in batch femientations, with propionic acid production being favored in 

semicontinuous fennentation by strain P200910. 

As was seen in batch fermentations, P200910 produced less biomass, but 

more propionic acid than strain P9. Growth rates of both strains were rapid 

through 5 days of incubation, at which time the propionic acid concentration was 26 

g/liter for P9 and 38 g/liter for P200910. The amount of propionic acid produced 

per gram biomass was greater for P200910 (0.81 gig), than for P9 (0.41 gig). 

Rates of propionic acid production decreased for both strains after 4 days of 

incubation. 

Early in the fermentation (days 2 to 4), P9 was able to utilize added glucose 

within 36 h. After day 4, P9 required at least 48 h to exhaust the added glucose. 

After day 6, complete glucose utilization did not occur. In contrast, strain P200910 

continued to use glucose at a high rate throughout the fermentation. Figure 7 

shows the fermentation profile for P200910 in the 36-h period following the first and 

sixth nutrient addition. After the first nutrient addition, glucose was exhausted by 

24 h, and biomass and organic acid concentrations increased through 36 h. After 

the sixth nutrient addition glucose again was exhausted by 24 h, but biomass and 

organic acid concentrations showed little or no change. 
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Fig. 5. Growth, lactose utilization, and acid production by strains P200910 

(A) and P9 (B) in whey permeate in a batch fermentation process. 

Symbols: *, biomass; 0, lactose; O, propionic add; •, acetic acid. 

Results are the averages of two replicate trials. 
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Fig. 6. Growtii and acid production by strains P200910 (A) and P9 (B) in 

semidefined medium in a semicontinuous femnentation process. 

Symbols: *, biomass; O, propionic acid; •, acetic acid. Results are 

the averages of tliree replicate trials. 
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Fig. 7. Growtli, glucose utilization, and acid production by strain P200910 

during the 36-h periods following the first (A) and sixth (B) nutrient 

additions during semicontinuous fermentation. Samples were 

analyzed at 12, 24, and 36 h after nutrient addition. Symbols: * 

optical density: 0, glucose; O, propionic acid; •, acetic acid. 
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DISCUSSION 

This study was undertal<en to develop a strain of Propionibacterium able to 

produce greater amounts of propionic acid. The commercial use of femientation 

processes for the production of organic acids is limited by low yields and high 

recovery costs. This limitation could be overcome if higher yields of acids could be 

obtained. The propionic acid-tolerant mutant, P200910, produced more propionic 

acid even though it grew to a lesser biomass than did the parental strain. 

Continued product synthesis during fermentation is often inhibited by the end 

products produced during the fermentation (27, 28, 31). Strains of bacteria and 

yeasts tolerant to fermentation end products have been successfully used to 

increase production of ethanol and butanol (21, 23, 35, 36). Lin and Blaschek (23) 

used a serial dilution method to increase the butanol tolerance of C. 

acetobuiyUcum. The resultant strain was able to produce greater amounts of 

butanol. We adapted this procedure to develop propionic acid tolerance in a strain 

of Propionibacterium. This tolerance seems to be a stable trait maintained in 

cultures grown in medium without propionic acid. 

Changes in lipid composition occur in bacteria to assure survival under 

adverse conditions such as changes in temperature, starvation, exposure to 

irradiation, and the presence of organic acids and solvents (26). Warth (39) has 

shown that propionic acid-resistant yeast strains are less permeable to propionic 

acid than are sensitive strains. Baer et ai. (1) showed that a butanol-tolerant 

mutant of Clostridium acetobutyiicum responded to the presence of butanol by 

increasing the percentage of 16:0 and 18:0 fatty acids and decreasing the 

percentage of 16:1 and 18:1 fatty acids in its membrane lipids. 
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Normally, propionibacteria contain predominantly branched-chain 15:0, 16:0, 

17:0 fatty acids and no unsaturated fatty acids (18). Gas chromatographic analysis 

showed greater amounts of straight-chain fatty acids in P200910 than in P9. The 

physiochemical effect of a methyl branch or a cis-double bond in a fatty acid 

instead of a saturated straight chain is to decrease the melting point and increase 

the surface area of the membrane that contains the lipid (11). Therefore, lesser 

amounts of branched-chain fatty acids and greater amounts of straight-chain fatty 

acids would likely result in a less fluid, less permeable membrane. This seems to 

be the situation with strain P200910. The significance of this change in cell lipids 

is unl<nown at this time. 

Reductions in the yield of cells grown in the presence of preservative have 

been reported (30, 37, 38, 40). We observed that P200910 had smaller biomass 

yield than its parent, yet it continued to utilize glucose in the presence of high 

propionic acid concentrations. Perhaps this acid-tolerant strain may be expending 

energy to rid itself of excess acid. 

Strain P200910 was superior to the parental strain P9 in several respects. 

Its yield of propionic acid from substrate, production of acid per gram biomass, 

propionic to acetic acid ratio, and percentage of theoretical maximum yield attained 

were greater than the corresponding values for P9 for all fermentation methods 

used. The major reason for the differences in these parameters is the shift in 

P200910 to greater production of propionic acid at the expense of acetic acid and 

biomass. Also, this tolerant strain was able to continue acid synthesis as high acid 

concentrations accumulated in the medium during femientation. 

Batch fermentations of semidefined medium showed that acid production by 

strain P200910 had seemingly shifted from a growth-associated to a nongrowth-
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associated phenomenon. This shift may be advantageous to femientation 

productivity as incoming glucose can be converted principally to organic acids. A 

decrease in the amount of biomass produced may reduce downstream processing 

costs during large-scale production by reducing the time and energy required for 

removing biomass. 

Whey fermented by propionibacteria is considered to be a natural 

preservative and is produced commercially for use in bakery products (2, 4, 7, 33). 

Whey permeate Is a cheap, readily available substrate for the production of 

propionic acid, but fermentations generally require 10 to 14 days to complete and 

produce 2 to 11 g/liter acid (2, 4, 7, 29, 33). 

We observed that strain P200910 produced more propionic acid from whey 

permeate than did its parent, but fermentation time was too long to make this an 

economically feasible process. After 8 days of fennentation, less than half of the 

total lactose had been used. Strains able to utilize lactose at higher rates are 

needed. It may be possible to increase propionic acid tolerance in such a strain or 

to select for faster-growing variants of strain P200910. 

Several fed-batch, semicontinuous, and continuous propionic acid 

fermentation processes have been patented (29). These yield 20 to 30 g/l 

propionic acid and require 5 to 14 days to complete (3, 29). Recent work on 

propionic acid production has focused on using continuous methods to increase the 

product yields during fermentation. Clausen and Gaddy (8) were able to produce 

20 g/liter propionic acid in an Immobilized cell reactor with a plug flow tubular 

column. Carrondo et al (5) compared the performance of three types of 

continuous reactors and reported that a continuous stirred-tank reactor with 

ultrafiltration cell recycle was most efficient, with propionic acid concentrations at 18 
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g/liter and maximum volumetric productivity of 2.2 g/liter/h. Blanc and Goma (2) 

and Boyaval and Corre (4) also reported efficient continuous culture-cell recycle 

systems that produced 17 and 25 g/liter propionic acid at maximum volumetric 

productivities of 5.0 and 14.3 g/liter/h, respectively. The maximum volumetric 

productivities of propionic acid obtained in this study were similar to those reported 

for batch fermentations and for continuous culture systems without cell recycle (3, 

5), but were less than values reported for continuous systems with cell recycle (2, 

4, 5). 

In this work, we have obtained a propionic acid concentration of 47 g/liter 

with strain P200910 grown in semidefined medium in a semicontinuous 

fermentation. This level is 40 to 50% higher than those previously reported in the 

literature (2, 3, 4, 5, 6, 7, 8, 13, 29, 34,), but is less than is theoretically possible. 

In practice, yields of propionic and acetic acids and their molar ratios often 

deviate from theoretical values derived from known pathways of glucose 

metabolism. This study was no different in this regard. Values obtained were 

typical of propionibacteria fermentations and likely were affected by the production 

of succinate (9, 32) and an extracellular polysaccharide (10). During fermentations, 

we observed both the accumulation of succinate in the medium (data not shown) 

and an increase in viscosity. 

The semicontinuous process used in this study shows promise as a means 

to produce propionic acid with P200910. It was run for 8 days but could be 

performed in a shorter period. Nutrients were added every 24 to 36 h, but 

P200910 exhausted the glucose within 12 to 16 h. A commercial process might be 

run by initially operating the fermenter in a fed-batch mode until the maximum 

propionic acid concentration was achieved. From that point, spent medium could 



www.manaraa.com

57 

be removed as fresh nutrients were added. The addition of nutrients could be 

triggered by the glucose level reaching a predetemiined lower limit This process 

could yield a continuous supply of broth with higher propionic acid concentrations 

than have been reported previously. 
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SECTION II 

PRODUCTION AND TRANSFORMATION OF PROTOPLASTS OF 

PROPIONIBA CTERIUM 
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ABSTRACT 

An improved method for production of protoplasts of Propionibacterium 

freudenreichii ^\xa\n P104 is reported. Protoplasts were prepared from cells grown 

in sodium lactate broth plus 1 % threonine and treating the cells with a combination 

of lysozyme and chymotrypsin. The protoplasts were osmotically sensitive and 

were able to regenerate on hypertonic medium to walled cells. Polyethylene 

glycol-induced transformation of protoplasts of strain P104 was attempted. The 

protoplasts seemingly were able to undergo transformation at low frequency but 

autonomous plasmid DNA was not detected by agarose gel electrophoresis. 

Intracellular nuclease activity was detected in strain P104 and may explain the lack 

of success in transforming this strain. 
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INTRODUCTION 

Strains of the genus Propionibacterium are industrially important 

microorganisms used in the production of Swiss-type cheeses (5, 8), silage inocula 

(6), probiotics (19), vitamin and propionic acid (24). 

To apply genetic engineering techniques to these industrially important 

organisms, a reliable and efficient method for introducing DNA is essential. 

Luchansky et ai (17) transformed cells of Propionibacterium jensenii sXxdÀn B-77 by 

electrotransformation. However, the transformation frequencies reported were too 

low to be useful for gene cloning. Ziernstein and Rehberger (31) recently reported 

electroporation-mediated transformation of three strains of Propionibacterium using 

the Staphyiococcus aureus plasmid pC194. However, no autonomous plasmid 

DNA was observed in the transformants. A comparison of hybridization patterns of 

digested chromosomal DNA from transformants and from the parent with a pC194 

probe showed that the plasmid had integrated into the host genome. 

Polyethylene glycol (PEG)-induced transformation of protoplasts is an 

effective method for introducing foreign DNA into gram-positive bacteria (4, 11, 12, 

15, 20, 21, 26, 27, 28, 29, 30). Fusion of bacterial protoplasts has also been 

useful for promoting genetic exchange between microorganisms (4, 7). Both 

methods of gene transfer are dependent on the successful production and 

regeneration of protoplasts. 

Though procedures for the production and regeneration of protoplasts in 

classical propionibacteria have been developed, successful protoplast 

transformation has not been accomplished. Baehman and Glatz (1) were the first 

to report the production and regeneration of protoplasts from Propionibacterium 
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freudenreichii. Pai (22) extended the procedure to other species of 

Propionibacterium. Though these authors were able to show the conversion of 

rod-shaped cells to spherical fomis, they were unable to produce protoplasts that 

burst when suspended in buffer without osmotic stabilizer (1). Woskow and Kondo 

(30) showed that protoplast transformation of Lactococcus iactis would not occur in 

cells that remained osmotically stable after muralytic enzyme treatment. The 

inability to produce Propionibacterium protoplasts that lyse when suspended in 

buffer without an osmotic stabilizer may be responsible for lack of successful 

transformation. 

In this study we report the development of an improved method for the 

production of protoplasts in a classical Propionibacterium strain. By growing cells 

in broth containing threonine, and treating these cells with a combination of 

lysozyme and chymotrypsin, we were able to produce and regenerate osmotically 

sensitive cells of P. freudenreichii Transformation of protoplasts with plasmid DNA 

produced antibiotic-resistant colonies that may contain transforming DNA 

integrated into the host chromosome. 
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MATERIALS AND METHODS 

Bacterial strains and media. Propionibacterium freudenreichii P'SQA was 

obtained from the culture collection of the Department of Food Science and Human 

Nutrition, Iowa State University. It was grown at 32°C in either sodium lactate 

broth (NLB) (1) or sodium lactate broth supplemented with 1% threonine (NLBT). 

Working cultures were maintained at 4°C on sodium lactate agar (NLA, NLB plus 

1.5% agar). 

Staphylococcus aureus ISP1390, containing plasmid pE194 (9) which 

confers erythromycin-inducible resistance (Em'^) to macrolide, lincosamide, and 

streptogramin (MLS) antibiotics, and S. ISP1386, containing plasmid pC194 

(10) which confers chloramphenicol resistance (Cm"^), were provided by Dr. P. A. 

Pattee, Department of Microbiology, Iowa State University, Ames. Cultures of S. 

aureus were grown at ZTC in trypticase soy broth (TSB, BBL Microbiology 

Systems, Cockeysville, MD) or trypticase soy agar (ISA, BBL), supplemented with 

either 5 jig/ml erythromycin (Em) or 5 jig/ml chloramphenicol (Cm). Working 

cultures were maintained on ISA at 4°C and transferred biweekly. All cultures 

were permanently stored at -70°C in their respective media supplemented with 

10% glycerol. 

Regeneration medium (RM) was prepared as described by Baehman and 

Glatz (1), and consisted of NLA plus 0.5 M sucrose and 2.5% gelatin. Soft agar 

overlays contained 0.5% agar in the RM base medium. All media were sterilized 

in an autoclave at 121°C for 15 min and tempered in a water bath. 

Buffers and reagents. Protoplast buffer (PB) consisted of 0.5 M sucrose, 

100 mM Tris-hydrochloride, and 10 mM MgClg, adjusted to pH 7.0. For some 
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applications sucrose was omitted from PB. Buffers were sterilized at 121°C for 15 

min and immediately cooled to room temperature in a water bath. Lysozyme 

(Sigma Chemical Co., St. Louis, MO), chymotrypsin (Boehringer Mannheim, 

Indianapolis, IN), pronase E (Sigma), achromopeptidase (Sigma), and trypsin 

(Boehringer Mannheim) were dissolved in PB or PB without sucrose at 20 mg/ml 

final concentration and sterilized by passage through a 0.22-nm membrane filter. 

Pronase was incubated for 1 h at 37^C prior to use. Lysostaphin (Sigma) was 

dissolved in PB without sucrose at 1 mg/ml final concentration and sterilized by 

filtration. 

DNA Isolation. Rapid microscale plasmid isolation from propionibacteria 

was performed by the method of Rehberger (25). Preparative-scale isolation of 

DNA from strain P104 was performed as described by Rehberger (25) except that 

500 ]i\ of diethyl pyrocarbonate (Sigma) were added prior to pronase digestion. 

Plasmid DNA was separated by electrophoresis of DNA samples through a 0.6% 

horizontal agarose gel in TBE buffer (0.089 M Tris hydrochloride, 0.089 M boric 

acid, 0.002 M EDTA, pH 8.0) for 6 to 12 h at 50 V. 

Gels were stained in ethidium bromide (0.5 ng/ml in distilled water), 

observed on a UV transilluminator (Foto UV 300; Fotodyne Inc., New Berlin, Wl), 

and photographed through 23A and 2B Wratten gel filters with a Polaroid MP4 

camera (film type 55). Large-scale isolation of plasmid DNA from S. aureus was 

performed by the method of Pattee (23), and the DNA was purified by CsCI-

ethidium bromide density gradient centrifugation. Gradient-purified plasmid DNA 

samples were extracted with isopropanol saturated with 5 M NaCI to remove the 

ethidium bromide and desalted and concentrated in 10 mM Tris hydrochIoride-1 

mM disodium EDTA (pH 7.5) by using a Centricon-30 microconcentrator according 
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to the instructions of the manufacturer (Amicon Corp., Danvers, IVIA). 

Nuclease activity assay. A 1-liter culture of P104 was incubated at 32°C 

for 36 h, harvested by centrifugation at 12,000 x g'for 10 min, and washed twice in 

0.01 M phosphate buffer (pH 7.0). Wet packed cells were resuspended in 10 ml of 

cold 0.01 M phosphate buffer (pH 7.0) and held on ice. Crude cell extracts were 

prepared by five passages through a French press (SLM Instruments, Inc., Urbana, 

IL). Cell debris was removed from the mixture by centrifugation at 12,000 x g'for 

15 min followed by passage of the supernatant through a 0.22-nm filter. 

A 50-pl volume of cell-free extract was placed in 1.5-ml tubes and 1 |ig of 

plasmid DNA was added. The mixture was incubated for either 1 h or 2 h at 37°C. 

The reaction was stopped by addition of an equal volume of phenolichloroform 

(Amresco, Solon, OH) followed by centrifugation at 12,000 x 5'for 15 min. The 

DNA in the upper aqueous layer was precipitated with ethanol and the precipitate 

was resuspended in 20 pi of 10 mM Tris hydrochloride-1 mM disodium EDTA (pH 

7.5). A 1-|il volume of RNase (Boehringer Mannheim) was added and the mixture 

incubated for 1 h at 37°C. The DNA was separated by electrophoresis as 

described above. 

Nick translation, DNA hybridization, and detection. Biotinylated plasmid 

DNA probes were made by using a nick translation kit and biotin-11-dUTP as 

described by the manufacturer (Bethesda Research Laboratories Inc., 

Gaithersburg, MD). A Centricon-30 microconcentrator was used to remove 

unincorporated biotin 11-dUTP after nick translation according to the instructions of 

the manufacturer. 

Total cell DNA was transferred to nitrocellulose sheets (Trans-blot 

nitrocellulose membranes; Bio-Rad Laboratories, Richmond, CA) by using the 
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Southern blotting technique (18). Prehybridization and hybridization buffers (10 

ml/100 cm^ of filter) consisted of 45% deionized formamide, 350 jig/ml denatured 

salmon sperm DNA, 0.15 M NaCI, 15 mM sodium citrate, 5X Denhardt reagent, 

and 25 mM sodium phosphate. Filters were subjected to the prehybridization 

treatment in a sealed bag at 42°C with constant agitation for at least 4 h. 

Biotinylated probe DNA was denatured at 95°C for 10 min and cooled in an ice 

bath. The denatured probe was added to the hybridization buffer at a 

concentration of 100 to 200 ng/ml. The filter and hybridization solution were 

sealed in a bag and Incubated at 42°C for 24 to 36 h. Posthybridization washes, 

filter blocking, and detection of homologous sequences were performed as 

described by the manufacturer of the biotinylated DNA detection system (Bethesda 

Research Laboratories). 

Production and regeneration of protoplasts. The final procedure for the 

formation of protoplasts of P. freudenreichii was performed as described previously 

(1) with the following modifications in the growth medium and the enzymes used to 

remove the cell wall. Isolated colonies from an NLA plate were inoculated into 10 

ml of NLB and incubated at 32°C for approximately 24 h. This culture was 

inoculated at 2% (vol/vol) into 30 ml of NLBT. The NLBT culture was incubated for 

24 to 36 h at 32°C to a final cell density of approximately 10® colony-forming 

units/ml. The cells were removed by centrifugation at 7,600 x g' for 5 min, washed 

in cold (4°C) deionized water, and suspended in 9 ml PB. A sample of the cell 

suspension was withdrawn, diluted in sterile water, and spread on NLA plates to 

determine the initial colony-forming units (CPU). A 1-ml aliquot of lysozyme in PB 

was added to 9 ml of cells to give a 2 mg/ml lysozyme concentration. The cell 

suspension was incubated at 37°C for 15 min, at which time 1 ml of chymotrypsin 
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in PB was added (2.0 mg/ml final chymotrypsin concentration). After incubation at 

37°C for another 30 min, the cells were sedimented by centrifugation at 2000 x g 

for 10 min, washed in 5 ml PB, and suspended in 9 ml PB. 

Osmotically sensitive cells were enumerated by diluting aliquots of the cell 

suspension in sterile water and spread-plating 0.1-ml samples onto NLA. Initial 

cells and protoplasts were enumerated as described by Baehman and Glatz (1). 

The NLA plates were counted after 7 days, and the RM plates counted after 30 

days of incubation. Percent protoplast regeneration was calculated as: [(CFU on 

RM - CFU on NLA after enzyme treatment) + (initial CFU on NLA - CFU on NLA 

after enzyme treatment)] x 100 = % regeneration. For comparison with previously 

published work, the equation of Lee-Wickner and Chassy (14) was also used for 

calculating regeneration frequencies: [(CFU on RM - CFU on NLA after enzyme 

treatment) + initial CFU on NLA] X 100= % regeneration. 

Transformation. A 0.5-ml portion of a protoplast suspension was placed in 

a 50-ml centrifuge tube. Plasmid DNA (1 ng in 10 mM Tris hydrochloride, 1 mM 

disodium EDTA, pH 7.5) suspended in an equal volume of 2X PB was added, 

followed immediately by 1.5 ml of a 30% polyethylene glycol 6000 (PEG, Sigma) 

solution in PB. Controls received no DNA. After gentle shaking, the mixture was 

kept at room temperature for 5 min at which time 5 ml PB were added. 

Protoplasts were recovered by centrifugation at 4,500 x g and were resuspended 

in 1 ml NLB supplemented with 0.5 M sucrose, 5 mM MgClg, and 1 ng/ml Em. 

After incubation at room temperature for 2 h, a 0.2-ml aliquot was added to 5 ml 

soft RM containing 10 jig/ml Em, and overlaid onto RM containing 10 ng/ml Em. 

The plates were incubated anaerobically at 32°C for 21-30 days. 



www.manaraa.com

73 

RESULTS 

Lysis of PI04 cells grown in NLB or NLBT. Strain P104 was incubated 

in NLB or NLBT and prepared for protoplast formation as described in Materials 

and Methods, except that cells were suspended in 9 ml PB without sucrose. A 1-

ml portion of lysozyme was added (2 mg/ml final concentration) and the mixture 

was incubated for the desired time. To circumvent the lengthy plate count method 

to count protoplasts, cell lysis upon exposure to SDS was taken as the indication 

of lysozyme activity. A 2-ml sample of the lysozyme-cell mixture was added to 2 

ml of a 4% SDS solution in deionized water. The suspension was mixed and the 

Aggq measured after 2 min at room temperature. 

Growth in NLBT resulted in greater sensitivity to cell wall digestion by 

lysozyme than cells grown in NLB (Fig. 1). Almost complete reduction in 

absorbance of NLBT-grown cells was seen after 15 min exposure to lysozyme 

followed by SDS treatment, compared to a 44% reduction in absorbance of NLB-

grown cells after the same treatment. Even after 60 min incubation with lysozyme, 

only a 69% reduction in absorbance of cells grown in NLB was seen. 

Activity of different lytic enzymes on PI04. Cultures were grown in 

NLBT, suspended in PB without sucrose, and incubated at 37^C with lysozyme, 

achromopeptidase, lysostaphin, lysozyme and chymotrypsin, or lysozyme and 

achromopeptidase. Lysostaphin was used at 50 jig/ml final concentration and all 

other enzymes were added at 2 mg/ml final concentrations. Protoplast formation 

was again determined by observing the decrease in absorbance when cells were 

mixed with SDS. Results are shown in Fig. 2. 



www.manaraa.com

Fig. 1. Effect of time of lysozyme treatment on lysis of cells of strain P104 

grown in NLB (•) or NLB with 1% threonine (•). Absorbance of each 

sample was measured 2 min after adding 2% SDS. Results are from 

averages of duplicate trials. 
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No decrease in absorbance was observed for cell suspensions treated with 

chymotrypsin or lysostaphin. Achromopeptidase showed some activity, but only a 

10% reduction in absorbance was seen after 30-min treatment with the enzyme. 

Incubation with lysozyme alone or with lysozyme in combination with other 

enzymes was effective; after 30-min treatments, 86% to 95% reductions in 

absorbance of cell suspensions were observed upon exposure to SDS. 

Incubation of the cell-enzyme mixtures was continued for another 12 h at 

which time 2-ml samples were removed into 2 ml water rather than into an SDS 

solution, and the measured. At this time no decrease in absorbance was 

observed for cells incubated with lysozyme, lysostaphin, chymotrypsin, 

achromopeptidase, or lysozyme/achromopeptidase. However, the absorbance of 

lysozyme/chymotrypsin-treated cells decreased by 30% upon dilution with water. 

Production of osmotically sensitive cells. To test for the generation of 

osmotically sensitive cells (i.e. cells that lyse upon suspension in hypotonic 

medium) upon exposure to lysozyme and proteolytic enzymes, strain P104 was 

grown in NLBT or NLB, suspended in PB without sucrose, and incubated at 37®C 

with lysozyme, chymotrypsin, pronase, and trypsin in various combinations. 

Production of osmotically sensitive cells was determined by observing the 

decrease in absorbance of cells mixed with water. Results are presented in Fig. 3. 

No decrease in absorbance was observed when cultures were exposed to 

proteolytic enzymes before they were mixed with water. No lysis of NLB-grown 

cells was seen after lysozyme treatment; only prolonged exposure to lysozyme 

resulted in some lysis of NLBT-grown cells upon mixing. However, incubation of 

cells with enzyme combinations resulted in significant lysis. Cells grown in NLBT 

showed greater losses of absorbance after dilution with distilled water, at shorter 
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Fig. 2. Effect of time of exposure to various enzymes on lysis of cells of 

strain PI04 grown in NLBT. Absorbance of each sample was 

measured 2 min after adding 2% SDS. Enzymes: •, lysostaphin or 

chymotrypsin; 0, lysozyme; achromopeptidase; o, lysozyme plus 

achromopeptidase; •, lysozyme plus chymotrypsin. Results are from 

duplicate trials. 
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enzyme exposure times, tfian did cells grown In NLB. 

Production and regeneration of protoplasts. Growth in NLBT and 

exposure to lysozyme plus a proteolytic enzyme yielded a high percentage of 

osmotically sensitive cells. The ability of these osmotically sensitive cells to 

regenerate to walled cells was examined next. Strain P104 was grown in either 

NLB or NLBT. The NLBT-grown cells were treated with lysozyme/chymotrypsin as 

described in Materials and Methods. The NLB-grown cells were incubated for 45 

min with 2 mg/ml lysozyme. A comparison of these two treatments for protoplast 

formation and regeneration efficiencies is presented in Table 2. 

Treatment of NLBT-grown cells with lysozyme/chymotrypsin resulted in 

conversion of 99.1% of the initial cells to protoplasts. Of those protoplasts, only 

3.4% regenerated to walled cells when plated on RM. A much lower percentage 

(12.7%) of NLB-grown cells was converted to protoplasts after lysozyme treatment, 

but a higher percent regeneration (28%) of these protoplasts was observed. When 

the equation of Lee-Wickner and Chassy (14) was used to calculate regeneration 

frequencies, values for NLB-grown cells and NLBT-grown cells were essentially the 

same (3.6% and 3.4%, respectively). Régénérant colonies appeared in 21 days 

for both treatments. 
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Fig 3. Effect of time of exposure to various enzyme treatments on lysis of 

cells of strain P104 after dilution with distilled water. Strain P104 was 

grown In NLB (A) or NLBT (B) and incubated with: •, pronase, 

chymotrypsin or trypsin; 0, lysozyme; •, lysozyme plus 

chymotrypsin; •, lysozyme plus pronase; #, lysozyme plus trypsin. 

When enzyme combinations were used, proteolytic enzymes were 

added 15 min after addition of lysozyme. Results are the averages 

of duplicate trials. 
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Transformation. Protoplasts produced from cells grown in NLBT and 

treated with lysozyme and chymotrypsin were transformed with 1 jig of plasmid 

pE194 DNA as described in Materials and Methods. Erythromycin-resistant 

colonies began to appear after 21 days of incubation and continued to appear 

through 27 days. A total of 60 Em'^-colonies appeared on the experimental plates; 

control plates (no added DNA) contained 15 spontaneous Em'^ colonies. All 

colonies showed resistance to 1 mg/ml erythromycin, whereas the parental strain 

was sensitive to 1 ug/ml erythromycin. 

The presumptive transformants were examined for the presence of 

covalently closed circular (CCC) DNA. When DNA preparations isolated by the 

microscale procedure were subjected to gel electrophoresis, faint bands that 

comigrated with plasmid pE194 seemed to be present in some of the 

transformants (Fig, 4). A few such transformants were grown in 1-liter cultures, 

and DNA was isolated by the preparative scale procedure. After cesium chloride-

ethidium bromide density gradient centrifugation, only single bands that were 

identified as chromosomal DNA were observed. Because plasmid DNA could not 

be isolated from the putative transformants, it was postulated that the donor 

plasmid may have integrated into the recipient chromosome. 

The DNA from 10 putative transformants was isolated, seperated by 

agarose gel electrophoresis, transferred to a nitrocellulose membrane, and 

hybridized with a biotinylated pE194 probe. Faint bands migrated at the same rate 

as did pE194 were observed in the gel for the transformants (Fig. 4). However, 

the pE194 probe did not hybridize to these bands. Instead, the probe hybridized 

to fragmented chromosomal DNA. No hybridization with chromosomal DNA from 

PI 04 was seen. These results suggest that part or all of plasmid pE194 may have 
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integrated into the recipient cfiromosome. 

To investigate the reasons for the low frequency of transformation and the 

inability to isolate CCC DNA from transformants, cell-free extracts of P104 were 

mixed with plasmids pE194 and pC194, incubated at ZTC. and subjected to 

agarose gel electrophoresis to observe possible effects of nuclease activity on 

isolated DNA. Resuts are illustrated in Fig. 5. Much of the CCC DNA disappeared 

after 1 h of incubation with cell-free extract, and complete loss of CCC DNA 

occurred after 2 h of incubation. After 2 h of incubation with cell-free extract, 

plasmid pC194 and plasmid pE194 were converted to the linear form. 
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Fig 4. Hybridization of biotin-labelled pE194 DNA to DNA isolated from Em"^ 

transformants of strain P104. (I) Agarose gel electrophoresis of DNA. 

(II) Nitrocellulose filter to which the plasmid DNA shown in panel I 

had been transferred, and hybridized with labelled pE194 probe DNA. 

Lanes: A-E and l-M, undigested DNA from different P104 

transformants: F, DNA from P./^ef/ofe/7/-e/(CMstrain P104; H, 

pE194 DNA 
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Fig 5. Agarose gel electrophoresis of plasmid pE194 DNA incubated for 1 

or 2 h at 37°C with and without cell-free extract (CFE) of P104. 

Lanes: A, P104 CFE alone; B, pE194; C, P104 CFE plus pE194; D, 

pE194: E, P104 CFE plus pE194. 
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DISCUSSION 

Polyethylene glycol-Induced transformation of protoplasts is an effective 

method for incorporating foreign DNA into bacteria. Though the production of 

protoplasts of P. freudenrefchiihas been reported (1), transformation of these 

protoplasts was unsuccessful. We attempted to develop a method to produce 

osmotically sensitive cells (cells that burst when resuspended in hypotonic buffers), 

because others have demonstrated that their production was essential for 

successful protoplast transformation (30). By growing strain P104 in NLB plus 1% 

threonine and treating these cells with a combination of lysozyme and proteolytic 

enzyme, were able to produce osmotically sensitive cells. Production of 

osmotically sensitive cells able to regenerate to walled cells should facilitate the 

development of protoplast transformation in these organisms. 

The ability to produce protoplasts can be affected by the culture's growth 

medium. The addition of penicillin (11), glycine (27, 28), and threonine (3) to 

growth media has been used to enhance cell wall removal by lysozyme. In this 

work, growth in NLB containing 1% threonine increased sensitivity of P. 

freudenreichii P104 to lysozyme treatment. This enhancement of lysozyme 

sensitivity is unique to strains, lil<e PI04, that are already sensitive to lysozyme. 

Strains that were recalcitrant to lysozyme treatment were still recalcitrant after 

growth in NLBT (data not shown). The activity of threonine could be due to its 

replacement of cell wall amino acids (3, 5) 

All three proteolytic enzymes tested improved the activity of lysozyme 

against P. freudenreichiiIt is unknown why proteolytic enzymes enhance 

protoplast production. Proteolytic activity is known to stimulate lytic activity of 
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various enzymes, possibly by clearing away cell debris and thus allowing greater 

access to the peptidoglycan layer (30). 

We decided to use the lysozyme/chymotrypsin combination even though 

treatment of P104 with this combination of enzymes did not produce osmotically 

sensitive cells as rapidly as did the other enzyme combinations. Woskow and 

Kondo (30) studied the same enzyme combinations on Lactococcus tactis, and 

showed that the lysozyme/chymotrypsin combination resulted in higher 

transformation frequencies even though it was not as effective at producing 

osmotically sensitive cells. Also, though the production of osmotically sensitive 

cells is required for transformation, optimal transformation frequencies usually are 

obtained when there is limited cell wall digestion (4, 27, 30). Incubation of cells 

with lysozyme/pronase or lysozyme/trypsin might cause overdigestion of the cell 

wall, resulting in protoplasts that are no longer viable and/or are unable to 

regenerate cell wall (2). 

Cells grown in NLBT were more sensitive to lysozyme, but regenerated at a 

lower frequency than did NLB-grown cells. Lee-Wickner and Chassy (14) showed 

that three factors are involved in successful regeneration: the presence of residual 

primer, the preservation of enzymatic activity of the wall biosynthetic system, and 

the ability of the strain to develop in a rich hypertonic medium. In the present 

case, the lower regeneration frequencies could be due to either the lack of primer 

or the digestion of cell wall biosynthetic proteins (2). Alternatively, the use of 

proteolytic enzymes may permanently damage membrane proteins vital for cell 

integrity. Though these regeneration frequencies are low, they are still high 

enough to achieve transformation; transformation of bacterial protoplasts with less 

than 1% regeneration has been reported (7, 11, 12). 
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We calculated regeneration frequencies based on the conversion of 

protoplasts to walled cells in-espective of the initial numbers of cells present. A 

lower regeneration frequency is calculated by using the equation of Lee-Wickner 

and Chassy (14), which uses the initial number of cells. If the production of 

protoplasts is low, this equation can yield a low value for regeneration frequency. 

We believe the equation used in this study better accounts for the actual number 

of protoplasts regenerated. 

Baehman and Glatz (1) reported regeneration frequencies between 10 and 

30%, calculated by using the Lee-Wickner and Chassey equation. In the cun^ent 

study, we were only able to achieve 3 to 4% regeneration as calculated by the 

same method. The difference may be due to the number of protoplasts formed. 

Baehman and Glatz (1) used higher concentrations of lysozyme (20 mg/ml) and 

were able to convert 99% of the initial cells to protoplasts. In this study, only 

12.7% of cells grown in NLB and treated with 2 mg/ml lysozyme were converted to 

protoplasts. 

A number of factors are involved in the successful transformation of 

bacterial cells. The DNA must be able to cross the cell wall and membrane, and 

be maintained and expressed once inside the cell. The method developed in this 

study has been used to produce protoplasts for preliminary transformation trials. 

The protoplasts seemingly were able to undergo PEG-induced transformation, 

albeit at low transformation frequency, and it seems that the transforming DNA 

may have integrated into the chromosome. Chromosomal integration of 

transforming plasmid DNA has been shown to occur in gram-positive bacteria (4, 

13, 16). Zirnstein and Rehberger (31) transformed three strains of propionibacteria 

with the 5. aureus plasmid pC194. Transformation frequencies of 1.1X10^ were 
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obtained. However, piasmid DNA was not observed in any of tlie transformants. 

Integration of pC194 piasmid DNA into the host chromosome was verified by 

comparing hybridization signals detected between parental and transformant DNA. 

In other organisms integration of plasmids has been exploited in a manner similar 

to that used for transposons to examine chromosome organization (13). 

The presence of a restriction/modification system may also be responsible 

for low transformation frequencies and forced integration of piasmid DNA. The 

presence of intracellular nuclease activity in strain P104 is indicative of a 

restriction/modification system. A number of different strategies have been 

employed to circumvent the presence of such systems in recipient strains used for 

transformation. If low-frequency transformation can be accomplished, DNA for 

future transformation experiments can be isolated from the recipient strain; these 

experiments usually show increased transformation frequencies (11, 12, 13, 16, 

25). Other methods to avoid nuclease activity include entrapping DNA in 

liposomes (23) and using strains that have lost restriction/modification capability 

(20). Even though we can produce protoplasts permeable to DNA, successful 

transformation of P. freudenreichii may not be possible until strains free of 

nuclease activity are available. 
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ABSTRACT 

Conjugal transfer of plasmid DNA into strains of propionibacteria has not 

been reported previously, A spontaneous streptomycin-resistant derivative 

(designated P23801) of Propionibacterium thoenii sXxaxn P38 was obtained by 

repeated transfers in broth containing streptomycin and streaking onto 

streptomycin gradient plates. Conjugal transfer between the streptomycin resistant 

strain and two Enterococcus faecalis douox strains, one carrying plasmid pAMpi 

(erythromycin resistance) and the other carrying plasmid plP501 (erythromycin and 

chloramphenicol resistance), was attempted by using the filter mating technique. 

Both matings yielded putative transconjugants, but agarose gel electrophoresis of 

total cellular DNA did not reveal the presence of autonomous piasmids. Transfer 

of the conjugal transposons Tn5/5from Lactococcus lactisané Tn5/5from 

Enterococcus faecalisXo Propionibacterium ye/7se/7/7 strain P22501 (erythromycin-

resistant, tetracycline-sensitive) was also attempted. No transconjugants were 

obtained in these filter matings. 
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INTRODUCTION 

Strains of the genus Propionibacterium are used in production of Swiss-type 

cheeses (3) and in other industrial processes (16). Despite their industrial 

importance very little is known about the genetics of these organisms. 

Transposons lx\916, first identified in Enterococcus faecalis DS16 (9, 10), 

and Tn^/^from Streptococcus sanguis FC1 (8) have been useful tools for 

genomic analyses of gram-positive bacteria (4, 5, 7, 9, 17, 21). These 

transposons possess characteristics that have been exploited for genome mapping 

and to target genes for cloning in Escherichia coH (11). Both transposons encode 

tetracycline resistance, are similar in size (15 and 17 kb for Tn5/5and 1^919 

respectively), are capable of conjugative transfer at frequencies ranging from 10"® 

to 10"®, and can randomly insert into either the chromosome or plasmids of host 

cells. Both transposons have been transferred to a number of gram-positive 

bacteria by filter mating; a high-frequency conjugal delivery system for TnP/5has 

been developed in Lactococcus iactis (17), and for Tn5/5in E faecaiis (10). 

Transfer of conjugal plasmids can also be used to facilitate genetic analysis 

and as an alternative gene transfer method in strains in which other gene transfer 

systems are either Inefficient or do not exist (5, 6, 11, 13, 14, 24, 25, 27, 30, 31, 

34). Plasmids pAMpI (5, 6) and plP501 (20) are capable of conjugal transfer into 

a wide range of hosts and have been used extensively in genetic studies of gram-

positive bacteria (1, 6, 12, 13, 14, 22, 24, 27, 30, 31, 34). Plasmid pAMpi, 

isolated from E faecaiis DS5, is a 26.5-kb plasmid expressing MLS (macrolide-

lincosamide-streptogramin B) antibiotic resistance. Plasmid plP501, first isolated 

from Streptococcus agaiactiae, is a 30.2-kb plasmid that encodes resistance to 
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both MLS antibiotics and chloramphenicol. Both plasmids have been 

characterized at the molecular level and have been used to develop gene cloning 

and transposon delivery systems (9, 23). 

To apply genetic engineering techniques to the propionibacteria, gene 

transfer systems similar to those described for other gram-positive bacteria must 

be developed (6, 8, 15, 22, 25). In this study, we report attempts to transfer 

plasmids pAIVipi and plP501 to strains of Propionibacterium. Also, transfer of the 

conjugal transposons Tn5/5and Tn^/Pinto propionibacteria was attempted. 
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MATERIALS AND METHODS 

Bacterial strains, media and reagents. The bacterial strains and 

plasmids used in this study are shown in Table 1. E faecalis^a& grown at ZTC 

in Brain Heart Infusion medium (BHI, Difco Laboratories, Detroit, Ml). Laciococcus 

/ac/fewas grown in M17G (31) at 32''C. All propionibacteria were grown in sodium 

lactate broth (NLB) at 32°C (19). Solid medium (sodium lactate agar, NLA) 

contained 1.5% agar and was incubated at 32°C in an anaerobic atmosphere 

produced by the Gas-Pak system (BBL Microbiology Systems, Cockeysville, MD). 

When present as selective agents in growth medium, antibiotics were used at the 

following concentrations: erythromycin (Em), 10 jig/ml; chloramphenicol (Cm), 5 

ng/ml; streptomycin sulfate (Str), 1200 jig/ml; tetracycline (Tc), 10 jig/ml. All 

antibiotics were obtained from Sigma Chemical Co., St. Louis, MO. All strains 

were permanently stored at -70°C in their respective broths supplemented with 

10% glycerol. 

Antibiotic susceptibility and MIC testing. Initially, susceptibility testing 

was performed by spot plating 0.02-ml amounts of broth cultures onto NLA 

containing various concentrations of the appropriate antibiotic. Plates were 

incubated anaerobically in a Gas-Pak system for 2 to 7 days at 32°C. Growth at 

the various concentrations was recorded and compared to growth on NLA. The 

MIC was taken as the lowest antibiotic concentration that suppressed the growth of 

the cultures. 

Prior to conjugation experiments, all cultures used were tested for growth on 

antibiotic-containing solid media. Serial dilutions of each culture were spread-

plated onto NLA containing the MIC of the appropriate antibiotic. Plates were 
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Table 1. Bacterial strains and plasmids used in this study. 

Strain" Source Relevant 
genotype 

Relevant 
phenotype 

Remarks 

P. thoenii 
P38 

A Em' Str" Cm= 

P. jensenii 
P22501 

A Em' Tc" Spontaneous Em' 
derivative of P. 

jensenii P25 (28) 

P. thoenii 
P23801 

A Str Em' Cm" Spontaneous Str' 
derivative of P. 
thoenii P38 (this 

study) 

L iactis CH919 B [Chr::Tn^/6] Id Str" (17) 

E faecaiis 
CG110 

C [Chr::TnP/^ To' Str" (9, 10) 

E faecaiis JH2-
2 (pAMpi) 

C (pAMp1) Em' Str" (4) 

E faecaiis ÔH2-
2 (plP501) 

C (pIPSOl) Em' Cm' Str" (30) 

^ Sources of strains: A, Department of Food Science and Human Nutrition, Iowa 
State University; B, G. F. Fitzgerald, Department of Food Microbiology, University 
College, Cork, Ireland; C, P. A. Pattee, Department of Microbiology, Iowa State 
University. » 
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incubated for 7 days at 32°C both aerobically and anaerobically. Plate counts on 

NLA plus antibiotic were compared to those on NLA. 

Development of antibiotic resistance in propionibacteria. Spontaneous 

streptomycin-resistant mutants of strain P38 were derived by repeated transfer into 

broth containing Streptomycin. Initially, a 1% inoculum of strain P38 was made 

into 10 ml of NLB plus 10 jig/ml of Streptomycin. Cultures were incubated 24 at 

32°C, and repeated transfers (1% inoculum) into fresh media were made. Once 

the growth rate of the strain in antibiotic medium was roughly equivalent 

(determined by visual inspection) to that in NLB, the antibiotic-tolerant strain was 

transferred to antibiotic gradient plates as described by Carlton and Brown (2). 

Cells were removed with a sterile loop from the end of a single cross-streak at 

the high antibiotic concentration and restreaked onto NLA plus antibiotic. Isolated 

colonies from the streak plate were transferred into NLB containing a slightly 

higher amount of antibiotic and the process was repeated. 

Conjugation. Filter matings were perfomried as described (8) with the 

following modifications. Log-phase broth cultures of donor and recipient strains 

were mixed at various ratios and filtered through 0.22-nm Gellman nitrocellulose 

filters. The filters were washed with 3 volumes of sterile deionized water and 

aseptically placed onto NLA, cell side up. After at least 2 days of anaerobic 

incubation at 32°C, the filters were aseptically removed into 1 ml of 0.01 M 

phosphate buffer (pH 7.0) and vortexed to remove cells. A 0.1-ml sample was 

plated onto NLA containing the appropriate selective antibiotics at the 

concentrations described above. After 7 to 10 days of incubation at 32°C, the 

plates were scored for the appearance of antibiotic-resistant colonies. Donor and 

recipient populations also were enumerated by plating onto NLA and incubating 7 
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days at 32®C. Conjugation frequencies were expressed as tine number of Em' Str' 

(pAIVipi transfer), or Em' Cm' Str' (plP501 transfer) colonies divided by the number 

of recipient cells in the mating mixture. Controls consisted of donor and recipient 

cells plated alone onto NLA containing the appropriate antibiotics. 

For broth matings, cells were resuspended in NLB at 1:1, 1:5, and 1:10 

donor:recipient ratios and incubated in NLB at 32°C for 24 h. A 0.1-ml sample was 

then plated onto NLA containing the appropriate selective antibiotics. 

Plasmid DNA isolation and purification. Plasmid DNA was isolated, 

purified, desalted, and concentrated from Propionibacterium strains by using the 

procedure of Rehberger (28). Total cellular DNA was separated by electrophoresis 

through a 0.6% horizontal agarose gel in TBE buffer (0.089 M Tris hydrochloride, 

0.089 M boric acid, 0.002 M EDTA, pH 8.0) for 8 to 12 h at 50 V. Gels were 

stained in ethidium bromide (0.5 |ig/ml in distilled water), observed on a U.V. 

transilluminator (Foto UV 300; Fotodyne Inc., New Beriin, Wl), and photographed 

through 23A and 2B Wratten gel filters with a polaroid I\/1P4 camera (film type 55). 
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RESULTS 

Strain selection. Propionibacterium strains P38 and P22501 used in 

mating experiments were selected based on the availability of small-scale 

procedures for the isolation of plasmid DNA. Also, strain P38 exhibits a clumping 

phenomenon (29) similar to that which has been associated with high-frequency 

conjugation in other bacteria (33). 

Development of antibiotic resistance in strain P38. After repeated 

transfers, a Str' derivative of parental strain P38, designated P23801, was 

obtained. Strain P23801 showed no differences from its parent in morphology, 

gram reaction, reduction of nitrate, and pigment production. The MIC of 

Streptomycin was 1400 ng/ml for strain P23801 compared to 100 ng/ml for P38. 

In contrast, the donor strains used in the conjugation experiments were sensitive to 

Streptomycin at 250 p.g/ml. 

Mating experiments. Transfer of Tn^/Pfrom L lactis CH919 to P. jensenii 

P22501 and transfer of TnP/^from E faecalis CG^^\Q to strain P22501 were 

attempted by filter matings. Log-phase cultures were adjusted to ODggg of 0,7 by 

diluting with fresh sterile medium. Conjugations were perfomied using 

dononrecepient ratios of 1:1, 1:2, 1:5, 1:10, and 1:20. Duplicate attempts were 

made at each ratio but no transconjugants appeared on any of the plates from 

these matings. 

Conjugal transfer of plasmids pAMBI and plP501 was attempted by using a 

1:10 dononrecipient ratio. Filter matings between P23801 and JH2-2 (pAMBI) 

resulted in the appearance of Em' Str' colonies at all ratios (Table 2). No 

propionibacteria appeared on the control plates. Fifty putative transconjugants 
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were picked and streal<ed onto fresfi NLA containing Em (10pg/ml) and Str (1000 

pg/mi). The growth rate on solid media containing antibiotics was equivalent to the 

growth of the parental strain on solid media without added antibiotic. All Em' Str' 

colonies were able to grow in media containing greater than 100 ng/ml Em while 

the parental strain was inhibited by 1 ng/ml Em. However, no autonomous 

plasmids were detected in any of the Em' Str' strains. 

Further filter matings were performed between donor strain E faecalis JH2-

2 that contained the double antibiotic resistance plasmid pIPSOl and the recipient 

strain P23801. Colonies (total of 39) showing resistance to all three antibiotics 

appeared after 9 days of incubation. No propionibacteria appeared on the control 

plates. The growth rate of these colonies on NLA or in NLB plus Em and Cm was 

slower than that of the parental strain. 

Antibiotic-resistant colonies and the parental antibiotic-sensitive strain were 

streaked onto NLA plates containing 5 ng/ml each of Em alone, Cm alone, or Em 

and Cm, and also onto control plates (Fig 1). No growth of the parental strain 

occurred on any of the plates containing antibiotics. Growth of putative 

transconjugants on medium containing Em was equivalent to that on medium 

without antibiotics, but was slower on media containing Cm alone or Cm plus Em. 
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Table 2. Frequency of transfer of antibiotic resistance from donor strains to 
P22501 or P23801 in filter mating experiments. 

Donor Recipient Selected 
Phenotype 

Transfer frequency 
(per recipient)® 

CG110 (TnP/5) P22501 To' Em' <4.0 X 10^ 

CH919 {ln919) P22501 Tc' Em' <6.0x10"® 

JH-2 (pAMpi) P23801 Em' Str' 1.2 X 10'^ 

JH-2 (plP501) P23801 Em' Cm' Str' 9.75 X 10^ 

° Transfer frequency is the number of antibiotic-resistant colonies per recipient. 
For filter matings with CG110 and CH919, total recepient cells were 4.0 x 10® and 
6.0 X 10® CFU respectively. 
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Fig 1. Growtli of P23801 (I) and putative P23801 plP501 transconjugants 

canrying plP501 DNA (II) on NI_A and NLA plus antibiotics after 7 

days of incubation at 32°C. Row: A, NLA plus 10 ug/ml Em; B, 

NLA plus 5 ug/ml Cm; C, NLA plus 10 ug/ml EM and 5 ug/ml Cm; 

D, NLA. 
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DISCUSSION 

The transposons Tn5/5and Tn^/^have unique properties that have made 

them useful in genetic analysis of gram-positive bacteria. First, they are capable of 

conjugal transfer in the absence of plasmid DNA at frequencies of 10"® to 10"® per 

recipient cell in a wide range of gram-positive bacteria (6, 7, 17, 21). Second, the 

excision of the transposons is precise in that the function of insertionally 

inactivated genes Is restored after the excision event (12, 17). Third, both 

transposons have been cloned in E coli\r\ which growth in the absence of 

tetracycline resulted in high-frequency precise excision (12, 17). These 

characteristics have been exploited by Gawron-Burke and Clewell (11) who 

developed a system for cloning insertionally inactivated genes from the 

chromosome of streptococci into E coH. 

In our laboratory, interest in transposons concerns their use as a tool in 

advancing genetic studies in the industrially important propionibacteria. Matings 

between propionibacteria and strains containing Tn^/5and TnP/Pwere performed, 

but no antibiotic-resistant transconjugants appeared. It's possible that congugation 

occurs at such a low frequency that more matings would have to be perfomied to 

detect it. A higher probability of success may be achieved by using strains of 

lactococci that are capable of conjugative transfer at high frequencies (1.25 x 10"* 

per recipient) (17). Unfortunately, we were unable to obtain these strains. 

In this study we attempted to conjugally transfer the broad host range 

plasmids pIPSOl and pAMpi into propionibacteria. These plasmids have been 

shown to transfer to a wide range of gram-positive bacteria and derivatives of 

these plasmids are used extensively as cloning vectors (1, 4, 5, 6, 12, 13, 14, 24, 



www.manaraa.com

110 

25, 27, 30, 31, 34). Our interest In these plasmids is to develop a conjugation 

system similar to that of other gram-positive bacteria (6, 15, 22) and to develop 

conjugatlve mobilization as an alternative vector delivery system (31) for 

propionibacteria. Filter matings with E /&eca//s containing plasmid pAMpi 

resulted in the appearance of colonies 100 times more resistant to erythromycin 

than was the parental strain. However, no autonomous plasmids were detected in 

any of the antibiotic-resistant strains. Possibly, either all or part of the plasmid 

integrated into the chromosome of the recipient strains. Alternatively, an inducible 

Em' gene may be present in strains of propionibacteria, and was expressed under 

conditions used in this study. The possibility of plasmid integration needs to be 

xplored by probing putative transconjugants with labelled pAMpi DNA. 

The doubly marked plasmid pIPSOl was used in further filter mating 

experiments to avoid the possibility that the appearance of the single trait during 

matings was the result of spontaneous mutation. Following filter matings, the 

appearance of Em' Cm' colonies required greater than 7 days of incubation. This 

is a considerably longer period of time than that required for colony appearance of 

the parental strain on NLA. As was the case with pAMpI, no autonomous plasmid 

was detected in any of the Em' Cm' colonies. When Em' Cm' colonies were 

streaked onto fresh NLA containing antibiotics, only the colonies streaked onto 

plates with Em alone showed growth equivalent to that on medium without 

antibiotics. If part or all of the plasmid integrated into the host chromosome, then 

the chloramphenicol acetyltransferase gene either did not integrate or integrated 

but did not fully express. Alternatively, induction of an Em' resistance gene rather 

than plasmid transfer in the recipient occurred. 

The work presented in this paper does not represent an exhaustive study of 
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the development of conjugation in the propionibacteria. It is interesting to note that 

when attempts were made to introduce plasmid DNA by transformation, putative 

recipients that were antibiotic-resistant but did not can7 independent plasmid DNA 

were also obtained (data not shown). 
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ABSTRACT 

In attempts to develop an electroporation method for transformation of 

Propionibacterium cells, we tested four different strains as recipients, 13 different 

buffers, and three different plasmids as vectors. Antibiotic-resistant colonies appeared 

on experimental plates in some experiments. However, when the putative 

transformants were examined for the presence of autonomous plasmid DNA, none 

was detected. Possible reasons for lack of success are discussed. 
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INTRODUCTION 

Strains of tine genus Propionibacterium are used in production of Swiss-type 

clieeses (10) and otiier products. Despite tfieir industrial importance, little is known 

about the genetics of these organisms and only two reports of gene transfer exist (16, 

29). 

Electroporation is an established procedure for transforming a variety of cell 

types (1, 4,16,25). According to one theory, in electroporation transient pores open 

in the cell membrane as an electric pulse causes polarization of the membrane (24). 

The resultant pores are large enough for macromolecules such as DNA to pass 

through and, as long as the electric field does not exceed a critical limit, this 

permeability is reversible. 

Electroporation-induced transfonmation has been used successfully to transfomi 

plant (14), animal (19), and both gram-positive (1, 2, 4, 6,16, 17, 20, 28) and gram-

negative bacteria (5, 8,13, 25). Recently, Zirnstein and Rehberger (29) successfully 

introduced the Staphylococcus aureus pC194 into several Propionibacterium 

strains. This report describes attempts at electroporation of propionibacteria. 
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MATERIALS AND METHODS 

Bacterial strains, culture conditions and plasmids. The bacterial strains and 

the plasmids used in this work are listed in Table 1. Propionibacteria were grown in 

sodium lactate broth (NLB) (11) at 32°C. Working cultures were maintained on 

sodium lactate agar (NLA, NLB plus 1.5% agar) at 4''C. Cultures of Staphylococcus 

aureus were grown in trypticase soy broth (TSB, BBL Microbiology Systems, 

Cockeysville, MD) or trypticase soy agar (TSA, BBL) that contained 5 pg/ml 

chloramphenicol (Cm) or erythromycin (Em) at 37°C. Working cultures were 

maintained on TSA at 4°C and transferred biweekly. Cultures of E co//were grown 

aerobically in Luria broth (14) at 37°C. All cultures were permanently stored at -70°C 

in their respective media supplemented with 10% glycerol. 

Plasmid DNA Isolation. Rapid microscale plasmid isolation from 

propionibacteria was performed by the method of Rehberger (21). Plasmid DNA was 

separated by electrophoresis of DNA samples through a 0.6% horizontal agarose gel 

in TBE buffer (0.089 M Tris hydrochloride, 0.089 M boric acid, 0.002 M EDTA, pH 8.0) 

for 6 to 12 h at 50 V. Gels were stained in ethidium bromide (0.5 ng/ml in distilled 

water), observed on a UV transilluminator (Foto UV 300; Fotodyne Inc., New Berlin, 

Wl), and photographed through 23A and 2B Wratten gel filters with a Polaroid MP4 

camera (film type 55) (22). 

Large-scale isolation of plasmid DNA from S. aureus was performed by the 

method of Pattee (18). The DNA was purified by CsCI-ethidium bromide density 

gradient centrifugation. The purified plasmid DNA samples were extracted with 

isopropanol saturated with 5 M NaCI to remove the ethidium bromide, desalted and 

concentrated in 10 mM Tris hydrochloride-1 mM disodium EDTA (pH 7.5) by using a 
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Table 1. Bacterial strains and plasmids. 

Strain Source® Plasmid Relevant 
phenotype'' 

Remarks/ 
Reference 

P. jenseniiPZ^ZO  ̂ A Plasmid-free 
derivative of P. 
Jensenii P63 

P. freudenreichii 
P104 (ATCC6207) 

A 

P. freudenreichii P22 A 

P. freudenreichii P7 A 

P. jensenii 
P53 

A 

5. aureus 
1390 

B pE194 Em' 

S. aureus 
ISP 1386 

B pC194 Cm' (12) 

S. aureus 
ISP1768 

B pTV32(ts) Em' Cm' (25) 

S. aureus 
ISP 1869 

B pTV1(ts) Em' Cm' (25) 

E coii 
BHB2600 

C PGKV210 

E
 

LU 

(15) 

E coii 
(BHB2602) 

C pNZ12 Cm' Km' (6) 

® Sources of strains; A, Department of Food Science and Human Nutrition, Iowa 
State University; B, P. A. Pattee, Department of Microbiology, Iowa State University: 
C, W. M. deVoss, Netherlands Institute for Dairy Research (NIZO), Ede, Netherlands. 
^ Relevant phenotype: Cm, chloramphenicol resistance; Em, erythromycin resistance; 
Km, kanamycin resistance. 
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Centricon-30 microconcentrator according to the instructions of the manufacturer 

(Amicon Corp., Danvers, MA). 

Large-scale isolation of plasmid DNAfrom E cc>//was performed by the cleared 

lysate method of Clewell and Helinski (7) and the DNA was purified by CsCI-ethidium 

bromide density gradient centrifugation. 

Electroporation buffers. The following buffers were used: deionized water 

(dHgO): EB (10% glycerol in deionized H^O, pH 7.0); HEB (272 mM sucrose, 1 mM 

MgClg, 7 mM HEPES buffer, pH 7.0); HB (1 mM MgClg, 7 mM HEPES buffer, pH 7.0); 

PEB (272 mM sucrose, 1 mM MgClg, 7 mM potassium phosphate, pH 7.0); PB (1 mM 

MgClg, 7 mM HEPES buffer, pH 7.0); GP (0.2 M potassium phosphate, 1 mM MgClg, 

pH 7.0); PEG (30% polyethylene glycol in dHjO, pH 7.0); PM (7 mM potassium 

phosphate, 1 mM mercaptoethanol, pH 7,0); PPM (30% polyethlylene glycol, 7 mM 

potassium phosphate, 1 mM mercaptoethanol, pH 7.0). For some experiments, PEB 

and HEB were used at greater than IX concentration. 

Electroporation protocol. Electroporation was performed according to the 

procedure of Mclntyre and Harlander (17) with modifications. A 1-ml sample of a 36-h 

culture of propionibacteria was inoculated into 50 ml of NLB and grown to an optical 

density at 600 nm of 0.8. Cells were removed by centrifugation (6000 X p; 10 min, 

4°C), washed twice with 10 ml of cold sterile deionized water and suspended in 1 ml 

of buffer to approximately 5x10^° CFU/ml final concentration. A 200-pl amount of 

cell suspension was placed in a 1.5-ml microcentrifuge tube and frozen at -70°C. 

Cells were thawed and held on ice immediately prior to electroporation. 

Plasmid DNA (1 to 10 |ig) was added to the cell suspension. The DNA and cells 

were mixed thoroughly and transferred to a semi-micro disposable cuvette (VWR 

Scientific Inc., Chicago, IL). In later experiments, the Flat-Pack electrode system 
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(BTX Inc., San Diego, CA) was used. The cell-DNA suspension was exposed to a 

high-voltage electric pulse with the BTX Transfector 100 equipped with the BTX 

Power-Plus system as described below. 

For most experiments, the electric pulse was provided by a BTX transfector 

100 equipped with a Power-Plus system capable of generating field strengths up to 

25 kV/cm. The electrode head assembly consisted of either a 0.5-mm electrode 

inserted into a semi-micro disposable cuvette or the BTX Flat-Pack system. Voltages 

of 200, 400, 600, 800, 900, 1200, 1500, and 2000 at a pulse duration of 5 or 10 ms 

were selected. Analysis of the pulse time, actual field strength, peak voltage or pulse 

decay time is not possible with the BTX Transfector 100. 

For some experiments (see table 1) the Bio-Rad Gene Puiser apparatus 

equipped with a Bio-Rad pulse controller (Bio-Rad Laboratories, Richmond, CA) was 

used according to the instructions of the manufacturer. Cell suspensions were 

prepared as described above and a 0.8-ml sample was placed in a chilled Gene 

Puiser cuvette containing two electrodes separated by 2 mm. Cells were exposed to 

a single pulse (peak voltage 2.5 kV; capacitance, 25 nF) that generated a peak field 

strength of 12.5 kV/cm, and treated as described above. 

Following electroporation cells were held on ice 10 min, diluted in NLB 

containing 1 ng/ml of the appropriate antibiotic and incubated at 32°C for 2 h before 

plating. Plasmid pNZ12 and pC194 transformants were selected on NLA containing 

5 ng/ml Cm. Plasmid pGKV210 transformants were selected on NLA containing 10 

ng/ml Em. Plasmid pTVI transformants were selected by the double soft agar 

induction-selection system overlay method of Youngman (27). In this method, porated 

cells were mixed with soft agar (NLA plus 0.7% agar) containing Em (1 ng/ml) and 

Cm (1 pg/ml) and overlayed onto an antibiotic-free NLA plate. After 6 h of incubation 
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at room temperature, a second agar overlay containing Em (40 pg/ml) and Cm (200 

ng/ml) was applied. After plates solidified, they were incubated anaerobically at 32°C. 

Suspensions of cells without added DNA served as controls. Putative 

transformants were subjected to agarose gel electrophoresis to confirm the presence 

of plasmid DNA. Protoplasts were prepared by the method of Baehman and Glatz 

(3). 
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RESULTS 

Electroporation. Table 2 shows the different combinations of strains, buffers 

and plasmid DNA preparation used. Initial electroporation trials were performed using 

strain P36301, in EB buffer exposed to 500, 600, 700, 800, and 900 V and plated 

onto NLA to detemiine survivability. A 100% survival rate was observed for cells 

subjected to 500, 600, 700, and 800 V. At 900 V arcing occurred and only 25% of 

the cells survived at this voltage. 

The only putative transformants of strain P36301 appeared when 600 V was 

applied to a cell suspension in 1.5X HEB with pTV32(ts) as donor DNA. Seven 

colonies arose on NLA plates containing Cm and Em. These colonies were replated 

onto fresh selective media and isolated colonies were picked into NLB containing Em 

and Cm. Growth of the putative transformants was slower than that of the parental 

strain in either NLA or NLB. Agarose gel electrophoresis of the putative transformants 

did not reveal the presence of autonomous plasmid DNA. 

Electroporation of whole cells of strain P104 was tried once at each enzyme-

buffer combination. Seven Em' colonies grew on plates containing cells porated at 

1500 V with plasmid pGKV210; no colonies were present on control plates. Agarose 

gel electrophoresis did not show the presence of autonomous plasmid DNA. Three 

Cm' colonies grew on plates containing cells that had been subjected to 1500 V with 

plasmid pC194: no colonies grew on control plates. Again, no autonomous plasmid 

DNA was detected by agarose gel electrophoresis. 

Two attempts at transferring plasmid pC194 into strain P22 were made. No 

transformants were detected in either trial. Electroporation of strain P7 was attempted 

once with each buffer (PB, PM, and PPM). No transformants were detected. 
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Likewise, no transformants were detected in two attempts to transform PI04 and 

P36301 protoplasts. 
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Table 2. A summary of electroporation trials with Propionibacterium strains. 

Strain Buffer Plasmid' 

P36301 dH20 pNZ12. pTVI(ts) 

P36301 EB pNZ12, pTV1(ts), 
pTV32(ts) 

P36301 GP pTV1(ts) 

P36301 
protoplasts 

GP pTV1(ts) 

P36301 HEB (no sucrose) pNZ12. pTV1(ts) 

P36301 IX, 1.5X, 2X HEB pNZ12, pTV1(ts) 

P3630f 1X, 1.5X, 2X HEB pNZ12. pTVI(ts) 

P7 PB, PM, PPM pC194 

P22 HEB pC194 

PI 04 EB, PB, GP pC194. pNZ12, 
pTV32(ts). pE194, 

PGKV210 

P104 PB, PM, PPM pC194 

P104 
protoplasts 

HEB pC194 

P104 HEB pC194, pNZ12, 
pTV32(ts) 

° Each trial was performed with single plasmids. 
Voltage applied with a Bio-Rad Gene Pulsar system. All other trials were performed 

using the BTX Transfector 100. 
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DISCUSSION 

Transformation of gram-positive bacteria is often a laborious and difficult task 

(6,23). Prior to the use of electroporation, most transformation procedures for gram-

positive bacteria involved the fomiation and subsequent regeneration of protoplasts. 

Electroporation of vegetative cells has simplified procedures used to transform gram-

positive bacteria. Also, electroporation has been effective for transforming bacteria 

that were recalcitrant to other methods (16). 

Two reports of gene transfer in the propionibacteria have appeared in the 

literature. Zirnstein and Rehberger (29) introduced plasmid pC194 into four strains 

of Propionibacterium by electroporation. The most efficient transformation of P. 

freudenreichii P7 was achieved with mid-log cells in a buffer containing 30% PEG 

(M.W. 10,000) in distilled H^O with either of two field strength and pulse duration 

combinations, 5.4 kV/cm with a 5 ms pulse or 37.8 kV/cm with a pulse of 

approximately 40 jisec. About 1.1 x 10^ transformants per ng of DNA were obtained, 

but no autonomous plasmid appeared in any of the transformants. Integration of 

pC194 into the Propionibacterium chromosome was verified by comparing 

hybridization signals detected between parental and transformant DNA digested with 

restriction enzymes. 

Luchansky e/a/(16) electroporated cells of Propionibacterium jensem'î -ll 

by using the Bio-Rad Gene Pulsar system. They obtained Cm-resistant transformants 

at a frequency of 3.2 X 10^ per jig pGK12 plasmid DNA. However, the results of 

agarose gel electrophoresis of whole cell DNA were not presented in their paper, and 

attempts by us and others (Dr. T. Rehberger, personal communication) to duplicate 

their procedure have been unsuccessful. 
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We attempted electroporation using conditions similar to those of Zirnstein and 

Rehberger (29) but were unsuccessful. Only one attempt was made with strain P7. 

It is possible that we did not allow a long enough incubation period for transformants 

to appear on plates; Zirnstein and Rehberger (29) observed transformants after 14 

days of incubation (Dr. T. G. Rehberger, personal communication). 

Various biological and physical factors influence the outcome of electroporation. 

Among the most important parameters for bacteria are the field strength, pulse 

duration, and shape of the pulse (5, 24). Variations in the cell growth phase and cell 

concentration, medium for washing and suspending cells, concentration of purified 

plasmid DNA, and ionic strength of the buffers also seem to influence the success of 

electroporation (5, 8, 13, 17, 24). 

The BTX Transfector 100 consists of a bank of capacitors that are charged 

to a peak voltage. An exponential pulse is generated by the discharge of the 

capacitors through the cell suspension to generate the required electrical field. It's 

generally believed that because of their smaller size, bacteria require a much larger 

electric field to induce poration than do mammalian or plant cells (5). At the time this 

study was undertaken, the BTX Transfector 100 was capable of delivering higher field 

strengths (17 Kv/cm) than other commercially available Instruments. 

The pulse length is largely determined by the resistance of the suspending 

medium. When buffers of low ionic strength (high resistance) are used, the pulse 

length is determined by the setting on the instrument. High ionic strength (low 

resistance) buffers produce shorter pulse times and in our hands resulted in arcing. 

Decreasing the pulse length increases the amplitude of the field required to transform 

cells maximally (5, 8). Experience with the BTX system shows that optimal 

transformation is achieved by using low ionic strength buffers (17). The buffers used 
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in this study varied in conductivity from low (dHgO) to high (FEB and HEB) and many 

contained ingredients chosen to minimize osmotic shock (sucrose, glycerol, PEG). 

Mercaptoethanol was incorporated into buffers to minimize oxidation that occurs 

during electroporation. All the buffers used in this study are those reported in the 

literature to be suitable for electroporation (5, 8, 13, 16, 20, 25). 

Generally, the transformation frequency goes up as the concentration of 

cells is increased (8,17). High cell densities recommended by the manufacturer were 

used in this study. No attempts were made to use dilute cultures. It's probable that 

electro-transformation of highly concentrated cells may not be successful for all 

bacteria and attempts should be made with dilute cell suspensions. 

Electroporation of most bacteria is optimal when cultures are harvested in mid-

to late-log phase (1, 5, 6, 8, 13, 16, 17, 20, 24, 25, 26). We used only one set of 

culture conditions to produce cells for electroporation. Cultures typically took between 

24 to 36 hr to reach an OD of 0.6 to 0.8, and were considered to be in mid-to late-log 

phase at this point. 

Some authors have reported increased electro-transformation when cells were 

treated with lysozyme (19, 24, 26). To render cells more accessible to transforming 

DNA we used the method of Baehman and Glatz (3) to fonm protoplasts. This method 

involves the use of high concentrations of lysozyme which may remove more of the 

cell wall than is necessary or may interfere with the electric field. Further work should 

be done using cells treated with less enzyme for shorter times. 

Conflicting reports exist on the relationship between the frequency of 

transformation by electroporation and cell killing (5, 6, 13). Some authors claim 

that optimal transformation is achieved at voltages that kill a large percentage of cells 

(5, 8, 13) while others claim optimal frequencies when a low percentage or no cells 



www.manaraa.com

131 

are killed (9, 28). Because of these conflicting reports, we decided to perform our 

experiments using voltages that result In no kill or low kill (200 V), 50% kill (500 V), 

75% kill (1000 V), and > 90% kill (>1200 V) (Dr. T. Rehberger, personal 

communication). 

A number of possible reasons for the inability to obtain transformants exist; the 

cells may not be permeable to plasmid DNA; cells may be permeable to DNA but 

nucleases degrade the plasmid DNA upon entry into the cell; the bacteria may 

possess an effective restriction/modification system that degrades newly introduced 

unmodified DNA; plasmids used in this study do not replicate in propionibacteria; 

appropriate conditions for electroporation were not used. 

Electroporation of propionibacteria should be applicable to introduce DNA into 

propionibacteria. Further research needs to be performed, however, to gain an 

understanding of the basic biology of the propionibacteria, especially the existence of 

possible restriction/modification systems, to allow successful application of electro-

transformation in these organisms. 
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GENERAL SUMMARY 

A propionic acid-tolerant derivative of Propionibacterium addipropionici 

strain P9 was obtained by serially transferring strain P9 through broth that 

contained increasing amounts of propionic acid. After one year of repeated 

transfers, a strain (designated P200910) capable of growth at higher propionic acid 

concentrations was obtained. Also, it was observed that strain P200910 

responded to growth in propionic acid by altering the proportion of straight-chain 

fatty acids in cellular lipids and by uncoupling acid production and growth. Growth 

rate, sugar utilization, and acid production were monitored during batch and semi-

continuous femientation of semi-defined medium and during batch fermentation of 

whey permeate for both strain P200910 and strain P9. The highest propionic acid 

concentration (47 g/l) was produced by P200910 in a semi-continuous 

fermentation. Strain P200910 produced a higher ratio of propionic acid to acetic 

acid, utilized sugar more efficiently, and produced more propionic acid per gram of 

biomass than did its parent in all fermentations. 

A new method for producing protoplasts of Propionibacterium fruedenreictiii 

was developed. The improved procedure involves growing cells in broth 

containing 1 % threonine and treating cells with a combination of lysozyme and 

chymotrypsin. This procedure produces osmotically fragile cells (cells that burst 

when suspended in hypotonic buffer) more rapidly, and uses lower lysozyme 

concentrations than previously reported procedures. 

Gene transfer of transposons and plasmid DNA was attempted by various 

methods: polyethylene glycol-induced protoplast transformation, conjugation, and 

electroporation. Antibiotic-resistant colonies would often appear as putative 
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recombinants during these experiments, but no autonomous piasmid DNA was 

ever detected by agarose gel electrophoresis of these cells. Conclusive evidence 

of gene transfer was not obtained, however, it is possible that integration of 

piasmid DNA into the host chromosome is took place. Nuclease activity was 

detected in at least one strain of Propionibacterium and may be responsible for the 

lack of successful gene transfer or the disappearance of autonomous plasmids. 

Resistance to high levels of antibiotics, especially erythromycin, was 

observed during transformation and conjugation experiments. Most of the 

plasmids used in this study contained genes coding for erythromycin resistance; 

chromosomal integration of these genes may have occurred. 
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APPENDIX A 

Cost of propionic acid produced by chemical synthesis. 

$1.52 per kg for a liquid product packaged in 55 gallon drums. 

Cost of propionic acid produced by fermentation (1500 I). 

Com Steep Liquor 

Labor, Shipping, 55 gal Drum 

Total Cost 

$200 

$150 

$350 

At 3% yield - 45 kg of propionic acid would be produced in 1500 I. 

Total Cost =$7.78 per kg 

Note, this does not include any downstream processing 

Cost of commercial mold inhibitors for agricultural use. 

Liquid products cost $0.77 to $2.20 per kg. These products contain from 50 

to 98% propionic acid and are applied at 0.5 to 1.0 kg per ton of feed. 

Dry products cost $1.32 to $4.40 per kg. These products contain 

approximately 50% propionic acid and are applied as described above. 
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